Избранные задания по математике из последних сборников ФИПИ
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Артём гуляет по парку. Он выходит из точки S и, дойдя до очередной развилки, с равными шансами выбирает следующую дорожку, но не возвращается обратно. Найдите вероятность того, что таким образом он выйдет к пруду или фонтану.
Ответ:
Артём гуляет по парку. Он выходит из точки S и, дойдя до очередной развилки, с равными шансами выбирает следующую дорожку, но не возвращается обратно. Найдите вероятность того, что таким образом он выйдет к детской площадке.
Ответ:
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку [−2,5; −1,5].
На следующей странице вам будет предложено проверить их самостоятельно.
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку [−0,5; 0,5].
На следующей странице вам будет предложено проверить их самостоятельно.
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно На ребрах AB и SB отмечены точки M и K соответственно, причем AM = 4, SK : KB = 1 : 3.
а) Докажите, что плоскость CKM перпендикулярна плоскости ABC.
б) Найдите объём пирамиды BCKM.
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырёхугольной пирамиде SABCD сторона основания AB равна 8, а боковое ребро SA равно 7. На рёбрах AB и SB отмечены точки M и K соответственно, причём AM = 2, SK = 1. Плоскость α перпендикулярна плоскости ABC и содержит точки
а) Докажите, что плоскость α содержит точку C.
б) Найдите площадь сечения пирамиды SABCD плоскостью α.
На следующей странице вам будет предложено проверить их самостоятельно.
Точки A, B и C лежат на окружности основания конуса с вершиной S, причём A и C диаметрально противоположны. Точка M — середина BC.
а) Докажите, что прямая SM образует с плоскостью ABC такой же угол, как и прямая AB с плоскостью SBC.
б) Найдите угол между прямой SA и плоскостью SBC, если AB = 4, BC = 6 и
На следующей странице вам будет предложено проверить их самостоятельно.
Точки A, B и C лежат на окружности основания конуса с вершиной S, причём A и C диаметрально противоположны. Точка M — середина BC.
а) Докажите, что прямая SM образует с плоскостью ABC такой же угол, как и прямая AB с плоскостью SBC.
б) Найдите угол между прямой SA и плоскостью SBC, если AB = 6, BC = 8 и
На следующей странице вам будет предложено проверить их самостоятельно.
Радиус основания конуса равен 12, а высота равна 5.
а) Постройте сечение конуса плоскостью, проходящей через вершину конуса и взаимно перпендикулярные образующие.
б) Найдите расстояние от плоскости сечения до центра основания конуса.
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной восьмиугольной призме ABCDEFGHA1B1C1D1E1F1G1H1 сторона основания AB равна а боковое ребро AA1 равно 6. Ha pe6pe CC1 отмечена точка M так, что
Плоскость
параллельна прямой H1E1 и проходит через точки
а) Докажите, что сечение данной призмы плоскостью α — равнобедренная трапеция.
б) Найдите объем пирамиды, вершиной которой является точка F1, а основанием — сечение данной призмы плоскостью α.
На следующей странице вам будет предложено проверить их самостоятельно.
При каком значении параметра a система
имеет наибольшее количество решений? Найдите эти решения.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В четырёхугольнике ABCD противоположные стороны не параллельны. Диагонали четырёхугольника ABCD пересекаются в точке O под прямым углом и образуют четыре подобных треугольника, у каждого из которых одна из вершин — точка O.
а) Докажите, что около четырёхугольника ABCD можно описать окружность.
б) Найдите радиус вписанной окружности, если AC = 10, BD = 26.
На следующей странице вам будет предложено проверить их самостоятельно.
В четырёхугольнике ABCD противоположные стороны не параллельны. Диагонали четырёхугольника ABCD пересекаются в точке O под прямым углом и образуют четыре подобных треугольника, у каждого из которых одна из вершин — точка O.
а) Докажите, что в четырёхугольник ABCD можно вписать окружность.
б) Найдите радиус вписанной окружности, если AC = 12, BD = 13.
На следующей странице вам будет предложено проверить их самостоятельно.
На сторонах AC, AB и BC прямоугольного треугольника ABC с прямым углом C вне треугольника ABC построены равнобедренные прямоугольные треугольники AKC, ALB и BMC с прямыми углами K, L и M соответственно.
а) Докажите, что LC — высота треугольника KLM.
б) Найдите площадь треугольника KLM, если LC = 4.
На следующей странице вам будет предложено проверить их самостоятельно.
На сторонах AC, AB и BC прямоугольного треугольника ABC с прямым углом C вне треугольника ABC построены равнобедренные прямоугольные треугольники AKC, ALB и BMC с прямыми углами K, L и M соответственно.
а) Докажите, что LC — высота треугольника KLM.
б) Найдите площадь треугольника KLM, если LC = 6.
На следующей странице вам будет предложено проверить их самостоятельно.
На сторонах AC, AB и BC прямоугольного треугольника ABC с прямым углом C во внешнюю сторону построены равнобедренные прямоугольные треугольники AKC и ALB и BMC с прямыми углами K, L и M соответственно.
а) Докажите, что LC — высота треугольника KLM.
б) Найдите площадь треугольника KLM, если LC = 10.
На следующей странице вам будет предложено проверить их самостоятельно.
Отрезок, соединяющий середины M и N оснований соответственно BC и AD трапеции ABCD, разбивает её на две трапеции, в каждую из которых можно вписать окружность.
а) Докажите, что трапеция ABCD равнобедренная.
б) Известно, что радиус этих окружностей равен 4, а меньшее основание BC исходной трапеции равно 14. Найдите радиус окружности, касающейся боковой стороны AB, основания AN трапеции ABMN и вписанной в неё окружности.
На следующей странице вам будет предложено проверить их самостоятельно.
Алексей планирует 15 декабря взять в банке кредит на 2 года в размере 1 806 000 рублей. Сотрудник банка предложил Алексею два различных варианта погашения кредита, описание которых приведено в таблице.
| Вариант 1 | − Каждый январь долг возрастает на 15% по сравнению с концом предыдущего года; − с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; − кредит должен быть полностью погашен за два года двумя равными платежами. |
|---|---|
| Вариант 2 | − 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца; − со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; − 15 числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца; − к 15-му числу 24 месяца кредит должен быть полностью погашен. |
На сколько рублей меньше окажется общая сумма выплат банку по более выгодному для Алексея варианту погашения кредита?
На следующей странице вам будет предложено проверить их самостоятельно.
Виктор планирует 15 декабря взять в банке кредит на 2 года в размере 1 962 000 рублей. Сотрудник банка предложил Виктору два различных варианта погашения кредита, описание которых приведено в таблице.
| Вариант 1 | − Каждый январь долг возрастает на 18% по сравнению с концом предыдущего года; − с февраля по июнь каждого года необходимо выплатить одним платежом часть долга; − кредит должен быть полностью погашен за два года двумя равными платежами. |
|---|---|
| Вариант 2 | −1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца; − со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; − 15 числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца; −к 15-му числу 24 месяца кредит должен быть полностью погашен. |
На сколько рублей меньше окажется общая сумма выплат банку по более выгодному для Виктора варианту погашения кредита?
На следующей странице вам будет предложено проверить их самостоятельно.
Цена ценной бумаги на конец года вычисляется по формуле S = 1,1S0 + 2000, где S0 — цена ценной бумаги на начало года в рублях. Максим может приобрести ценную бумагу, а может положить деньги на банковский счёт, на котором сумма увеличивается за год на 12%. В начале любого года Максим может продать бумагу и положить все вырученные деньги на банковский счёт, а также снять деньги с банковского счёта и купить ценную бумагу. В начале
На следующей странице вам будет предложено проверить их самостоятельно.
Бригаду из 30 рабочих нужно распределить по двум объектам. Если на первом объекте работает p человек, то каждый из них получает в сутки 200p рублей. Если на втором объекте работает p человек, то каждый из них получает в сутки (50p + 300) руб. Как нужно распределить рабочих по объектам, чтобы их суммарная суточная зарплата оказалась наименьшей? Сколько рублей в этом случае придётся заплатить за сутки всем рабочим?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите значения a, при каждом из которых среди корней уравнения будет ровно три положительных.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых среди корней уравнения будет ровно два положительных.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите, при каких неотрицательных значениях a функция на отрезке [−1; 1] имеет ровно одну точку минимума.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите, при каких неположительных значениях a функция на отрезке [−2; 2] имеет две точки максимума.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых уравнение
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых уравнение
имеет ровно два различных корня.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых система уравнений
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при котором система уравнений
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых любое значение из промежутка [−1,5; −0,5] является решением неравенства
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых линии и
ограничивают многоугольник, площадь которого не более 0,5.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых линии и
ограничивают многоугольник, площадь которого не менее
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых система уравнений
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при котором система уравнений
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых система уравнений
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых система уравнений
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых уравнение имеет хотя бы одно решение на интервале
На следующей странице вам будет предложено проверить их самостоятельно.
Петя участвовал в викторине по истории. За каждый правильный ответ участнику начисляется 8 баллов, за каждый неверный — списываются 8 баллов, за отсутствие ответа списывается 3 балла. По результатам викторины Петя набрал 35 баллов.
а) На сколько вопросов Петя не дал ответа, если в викторине было 30 вопросов?
б) На сколько вопросов Петя не дал ответа, если в викторине было 35 вопросов?
в) На сколько вопросов Петя ответил правильно, если в викторине было 33 вопроса?
На следующей странице вам будет предложено проверить их самостоятельно.
Оля участвовала в викторине по истории. За каждый правильный ответ участнику начисляется 8 баллов, за каждый неверный — списываются 8 баллов, за отсутствие ответа списывается 3 балла. По результатам викторины Оля набрала 35 баллов.
а) На сколько вопросов Оля ответила правильно, если в викторине было 24 вопроса?
б) На сколько вопросов Оля не дала ответа, если в викторине было 25 вопросов?
в) На сколько вопросов Оля ответила неверно, если в викторине было 37 вопросов?
На следующей странице вам будет предложено проверить их самостоятельно.
Александр хочет купить пакет акций быстрорастущей компании. В начале года у Александра не было денег на покупку акций, а пакет стоил 100 000 рублей. В середине каждого месяца Александр откладывает на покупку пакета акций одну и ту же сумму, а в конце месяца пакет дорожает, но не более чем на 30%. Какую наименьшую сумму нужно откладывать Александру каждый месяц, чтобы через некоторое время купить желаемый пакет акций?
На следующей странице вам будет предложено проверить их самостоятельно.
У Миши в копилке есть двухрублёвые, пятирублёвые и десятирублёвые монеты. Если взять 10 монет, то среди них обязательно найдется хотя бы одна двухрублёвая. Если взять 15 монет, то среди них обязательно найдётся хотя бы одна пятирублёвая. Если взять 20 монет, то среди них обязательно найдется хотя бы одна десятирублёвая.
а) Может ли у Миши быть 30 монет?
б) Какое наибольшее количество монет может быть у Миши?
в) Какая наибольшая сумма рублей может быть у Миши?
На следующей странице вам будет предложено проверить их самостоятельно.
У Коли в копилке есть 2-рублёвые, 5-рублёвые и 10-рублёвые монеты. Если взять 20 монет, то среди них обязательно найдется хотя бы одна 2-рублёвая. Если взять 25 монет, то среди них обязательно найдётся хотя бы одна 5-рублёвая. Если взять 30 монет, то среди них обязательно найдется хотя бы одна 10-рублёвая.
а) Может ли у Коли быть 50 монет?
б) Какое наибольшее количество монет может быть у Коли?
в) Какая наибольшая сумма рублей может быть у Коли?
На следующей странице вам будет предложено проверить их самостоятельно.
Для набора 30 различных натуральных чисел выполнено, что сумма любых трёх чисел из этого набора меньше суммы любых четырёх чисел из этого набора.
а) Может ли одним из этих чисел быть число 999?
б) Может ли одним из этих чисел быть число 66?
в) Какое наименьшее значение может принимать сумма чисел этого набора?
На следующей странице вам будет предложено проверить их самостоятельно.
Для набора 40 различных натуральных чисел выполнено, что сумма любых двух чисел из этого набора меньше суммы любых четырёх чисел из этого набора.
а) Может ли одним из этих чисел быть число 777?
б) Может ли одним из этих чисел быть число 33?
в) Какое наименьшее значение может принимать сумма чисел этого набора?
На следующей странице вам будет предложено проверить их самостоятельно.
Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел (1! = 1).
а) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 9 нулями?
б) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 23 нулями?
в) Сколько существует натуральных чисел n, меньших 100, для каждого из которых десятичная запись числа n! · (100 − n)! оканчивается ровно 23 нулями?
На следующей странице вам будет предложено проверить их самостоятельно.
Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел (1! = 1).
а) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 10 нулями?
б) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 17 нулями?
в) Сколько существует натуральных чисел n, меньших 75, для каждого из которых десятичная запись числа n! · (75 − n)! оканчивается ровно 17 нулями?
На следующей странице вам будет предложено проверить их самостоятельно.
Группу детей можно перевезти автобусами модели А или автобусами модели Б. Известно, что в автобусе модели А количество мест больше 30, но меньше 40, а в автобусах модели Б — больше 40, но меньше 50. Если всех детей рассадить в автобусы модели А, то все места будут заняты. Если всех детей рассадить в автобусы модели Б, то все места так же будут заняты, но потребуется на один автобус меньше.
а) Может ли потребоваться 5 автобусов модели А?
б) Найдите наименьшее возможное количество детей в группе, если известно, что их больше 150.
в) Найдите наибольшее возможное количество детей в группе.
На следующей странице вам будет предложено проверить их самостоятельно.
Группу детей можно перевезти автобусами модели А или автобусами модели Б. Известно, что в автобусе модели А количество мест больше 40, но меньше 50, а в автобусах модели Б — больше 50, но меньше 60. Если всех детей рассадить в автобусы модели А, то все места будут заняты. Если всех детей рассадить в автобусы модели Б, то все места так же будут заняты, но потребуется на один автобус меньше.
а) Может ли потребоваться 4 автобуса модели Б?
б) Найдите наибольшее возможное количество детей в группе, если известно, что их меньше 300.
в) Найдите наибольшее возможное количество автобусов модели А.
На следующей странице вам будет предложено проверить их самостоятельно.
Издательство на выставку привезло несколько книг для продажи (каждую книгу привезли в единственном экземпляре). Цена каждой книги — натуральное число рублей. Если цена книги меньше 100 рублей, на неё приклеивают бирку «выгодно». Однако до открытия выставки цену каждой книги увеличили на 10 рублей, из-за чего количество книг с бирками «выгодно» уменьшилось.
а) Могла ли уменьшиться средняя цена книг с биркой «выгодно» после открытия выставки по сравнению со средней ценой книг с биркой «выгодно» до открытия выставки?
б) Могла ли уменьшиться средняя цена книг без бирки «выгодно» после открытия выставки по сравнению со средней ценой книг без бирки «выгодно» до открытия выставки?
в) Известно, что первоначально средняя цена всех книг составляла 110 рублей, средняя цена книг с биркой «выгодно» составляла 81 рубль, а средняя цена книг без бирки — 226 рублей. После увеличения цены средняя цена книг с биркой «выгодно» составила 90 рублей, а средняя цена книг без бирки — 210 рублей. При каком наименьшем количестве книг такое возможно?
На следующей странице вам будет предложено проверить их самостоятельно.
Издательство на выставку привезло несколько книг для продажи (каждую книгу привезли в единственном экземпляре). Цена каждой книги — натуральное число рублей. Если цена книги меньше 80 рублей, на неё приклеивают бирку «выгодно». Однако до открытия выставки цену каждой книги увеличили на 5 рублей, из-за чего количество книг с бирками «выгодно» уменьшилось.
а) Могла ли уменьшиться средняя цена книг с биркой «выгодно» после открытия выставки по сравнению со средней ценой книг с биркой «выгодно» до открытия выставки?
б) Могла ли уменьшиться средняя цена книг без бирки «выгодно» после открытия выставки по сравнению со средней ценой книг без бирки «выгодно» до открытия выставки?
в) Известно, что первоначально средняя цена всех книг составляла 103 рублей, средняя цена книг с биркой «выгодно» составляла 67 рублей, а средняя цена книг без бирки — 157 рублей. После увеличения цены средняя цена книг с биркой «выгодно» составила 70 рублей, а средняя цена книг без бирки — 146 рублей. При каком наименьшем количестве книг такое возможно?
На следующей странице вам будет предложено проверить их самостоятельно.
Сторона квадрата на 3 см длиннее ширины прямоугольника, площади этих фигур равны, а все длины сторон — целые числа.
а) Может ли ширина прямоугольника быть равной 8?
б) Может ли длина прямоугольника быть равной 16?
в) Найдите все возможные варианты таких пар прямоугольников и квадратов. В ответе укажите длины их сторон.
На следующей странице вам будет предложено проверить их самостоятельно.
Сторона квадрата на 2 см длиннее ширины прямоугольника, площади этих фигур равны, а все длины сторон — целые числа.
а) Может ли ширина прямоугольника быть равной 6?
б) Может ли длина прямоугольника быть равной 9?
в) Найдите все возможные варианты таких пар прямоугольников и квадратов. В ответе укажите длины их сторон.
На следующей странице вам будет предложено проверить их самостоятельно.
Известно, что в кошельке лежало n монет, каждая из которых могла иметь достоинство 2, 5 и 10 рублей. Аня сделала все свои покупки, расплатившись за каждую покупку отдельно без сдачи только этими монетами, потратив при этом все монеты из кошелька.
а) Могли ли все её покупки состоять из блокнота за 56 рублей и ручки за 29 рублей, если n = 14?
б) Могли ли её покупки состоять из чашки чая за 10 рублей, сырка за 15 рублей и пирожка за 20 рублей, если n = 19?
в) Какое наименьшее количество пятирублёвых монет могло быть в кошельке, если Аня купила только альбом за 85 рублей и n = 24?
На следующей странице вам будет предложено проверить их самостоятельно.
Известно, что в кошельке лежало n монет, каждая из которых могла иметь достоинство 2, 5 и 10 рублей. Таня сделала все свои покупки, расплатившись за каждую покупку отдельно без сдачи только этими монетами, потратив при этом все монеты из кошелька.
а) Могли ли все её покупки состоять из блокнота за 64 рублей и ручки за 31 рубль, если n = 16?
б) Могли ли её покупки состоять из стакана компота за 15 рублей, сырка за 20 рублей и булочки за 25 рублей, если n = 26?
в) Какое наименьшее количество пятирублёвых монет могло быть в кошельке, если Таня купила только альбом за 96 рублей и n = 19?
На следующей странице вам будет предложено проверить их самостоятельно.
Числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 16 произвольно делят на три группы так, чтобы в каждой группе было хотя бы одно число. Затем вычисляют значение среднего арифметического чисел в каждой из групп (для группы из единственного числа среднее арифметическое равно этому числу).
а) Могут ли быть одинаковыми два из трех значений средних арифметических в группах из разного количества чисел?
б) Могут ли быть одинаковыми все три значения средних арифметических?
в) Найдите наименьшее возможное значение наибольшего из получаемых трёх средних арифметических.
На следующей странице вам будет предложено проверить их самостоятельно.