Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Пирамида
1.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC с вер­ши­ной S бис­сек­три­сы тре­уголь­ни­ка ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 2; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка OS.

2.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC ме­ди­а­ны ос­но­ва­ния ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 9; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка OS.

3.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC ме­ди­а­ны ос­но­ва­ния ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 2; объем пи­ра­ми­ды равен 5. Най­ди­те длину от­рез­ка OS.

4.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC ме­ди­а­ны ос­но­ва­ния ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 2, объем пи­ра­ми­ды равен 4. Най­ди­те длину от­рез­ка OS.

5.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC ме­ди­а­ны ос­но­ва­ния ABC пе­ре­се­ка­ют­ся в точке O. Пло­щадь тре­уголь­ни­ка ABC равна 4; объем пи­ра­ми­ды равен 6. Най­ди­те длину от­рез­ка OS.

6.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SO=15, BD=16. Най­ди­те бо­ко­вое ребро SA.

7.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SB  =  13, AC  =  24. Най­ди­те длину от­рез­ка SO.

8.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SO=8, BD=30. Най­ди­те бо­ко­вое ребро SC.

9.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SD=10, SO=6. Най­ди­те длину от­рез­ка AC.

10.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SO  =  12, BD  =  18. Най­ди­те бо­ко­вое ребро SA.

11.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка M  — се­ре­ди­на ребра AB, S  — вер­ши­на. Из­вест­но, что BC  =  3, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 45. Най­ди­те длину от­рез­ка SM.

12.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка L  — се­ре­ди­на ребра AC, S  — вер­ши­на. Из­вест­но, что BC  =  6, а SL  =  5. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.

13.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка K  — се­ре­ди­на ребра BC, S  — вер­ши­на. Из­вест­но, что SK  =  4, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 54. Най­ди­те длину ребра AC.

14.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC P  — се­ре­ди­на ребра AB, S  — вер­ши­на. Из­вест­но, что BC  =  5, а SP  =  6. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды.

15.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка Q  — се­ре­ди­на ребра AB, S  — вер­ши­на. Из­вест­но, что BC  =  7, а пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды равна 42. Най­ди­те длину от­рез­ка SQ.

16.  
i

Сто­ро­ны ос­но­ва­ния пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь по­верх­но­сти этой пи­ра­ми­ды.

17.  
i

Сто­ро­ны ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равны 10, бо­ко­вые ребра равны 13. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти этой пи­ра­ми­ды.

18.  
i

Объем па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1 равен 9. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды ABCA_1.

19.  
i

Во сколь­ко раз уве­ли­чит­ся объем пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить в два раза?

20.  
i

Ос­но­ва­ни­ем пи­ра­ми­ды яв­ля­ет­ся пря­мо­уголь­ник со сто­ро­на­ми 3 и 4. Ее объем равен 16. Най­ди­те вы­со­ту этой пи­ра­ми­ды.

21.  
i

Най­ди­те объем пра­виль­ной тре­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 1, а вы­со­та равна  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

22.  
i

Най­ди­те вы­со­ту пра­виль­ной тре­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 2, а объем равен  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

23.  
i

Во сколь­ко раз уве­ли­чит­ся объем пи­ра­ми­ды, если ее вы­со­ту уве­ли­чить в че­ты­ре раза?

24.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 6, бо­ко­вое ребро равно 10. Най­ди­те ее объем.

25.  
i

Ос­но­ва­ни­ем пи­ра­ми­ды слу­жит пря­мо­уголь­ник, одна бо­ко­вая грань пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния, а три дру­гие бо­ко­вые грани на­кло­не­ны к плос­ко­сти ос­но­ва­ния под углом 60°. Вы­со­та пи­ра­ми­ды равна 6. Най­ди­те объем пи­ра­ми­ды.

26.  
i

Бо­ко­вые ребра тре­уголь­ной пи­ра­ми­ды вза­им­но пер­пен­ди­ку­ляр­ны, каж­дое из них равно 3. Най­ди­те объем пи­ра­ми­ды.

27.  
i

Объем тре­уголь­ной пи­ра­ми­ды SABC, яв­ля­ю­щей­ся ча­стью пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды SABCDEF, равен 1. Най­ди­те объем ше­сти­уголь­ной пи­ра­ми­ды.

28.  
i

Объем пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды SABCD равен 12. Точка E  — се­ре­ди­на ребра SB. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды EABC.

29.  
i

От тре­уголь­ной пи­ра­ми­ды, объем ко­то­рой равен 12, от­се­че­на тре­уголь­ная пи­ра­ми­да плос­ко­стью, про­хо­дя­щей через вер­ши­ну пи­ра­ми­ды и сред­нюю линию ос­но­ва­ния. Най­ди­те объем от­се­чен­ной тре­уголь­ной пи­ра­ми­ды.

30.  
i

Объем тре­уголь­ной пи­ра­ми­ды равен 15. Плос­кость про­хо­дит через сто­ро­ну ос­но­ва­ния этой пи­ра­ми­ды и пе­ре­се­ка­ет про­ти­во­по­лож­ное бо­ко­вое ребро в точке, де­ля­щей его в от­но­ше­нии 1 : 2, счи­тая от вер­ши­ны пи­ра­ми­ды. Най­ди­те боль­ший из объ­е­мов пи­ра­мид, на ко­то­рые плос­кость раз­би­ва­ет ис­ход­ную пи­ра­ми­ду.

31.  
i

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти пра­виль­но­го тет­ра­эд­ра, если все его ребра уве­ли­чить в два раза?

32.  
i

Най­ди­те пло­щадь по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­ны ос­но­ва­ния ко­то­рой равны 6 и вы­со­та равна 4.

33.  
i

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти ок­та­эд­ра, если все его ребра уве­ли­чить в 3 раза?

34.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, сто­ро­на ос­но­ва­ния ко­то­рой равна 6 и вы­со­та равна 4.

35.  
i

Во сколь­ко раз уве­ли­чит­ся пло­щадь по­верх­но­сти пи­ра­ми­ды, если все ее ребра уве­ли­чить в 2 раза?

36.  
i

Ребра тет­ра­эд­ра равны 1. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через се­ре­ди­ны че­ты­рех его ребер.

37.  
i

Най­ди­те объем пи­ра­ми­ды, вы­со­та ко­то­рой равна 6, а ос­но­ва­ние  — пря­мо­уголь­ник со сто­ро­на­ми 3 и 4.

38.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 12, объем равен 200. Най­ди­те бо­ко­вое ребро этой пи­ра­ми­ды.

39.  
i

Сто­ро­на ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равна 2, бо­ко­вое ребро равно 4. Най­ди­те объем пи­ра­ми­ды.

40.  
i

Объем пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равен 6. Сто­ро­на ос­но­ва­ния равна 1. Най­ди­те бо­ко­вое ребро.

41.  
i

Сто­ро­на ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равна 4, а угол между бо­ко­вой гра­нью и ос­но­ва­ни­ем равен 45°. Най­ди­те объем пи­ра­ми­ды.

42.  
i

Объем па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1 равен 12. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды B_1ABC.

43.  
i

Объем куба равен 12. Най­ди­те объем че­ты­рех­уголь­ной пи­ра­ми­ды, ос­но­ва­ни­ем ко­то­рой яв­ля­ет­ся грань куба, а вер­ши­ной  — центр куба.

44.  
i

Най­ди­те объем па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1, если объем тре­уголь­ной пи­ра­ми­ды ABDA_1 равен 3.

45.  
i

Най­ди­те объем пи­ра­ми­ды, изоб­ра­жен­ной на ри­сун­ке. Ее ос­но­ва­ни­ем яв­ля­ет­ся мно­го­уголь­ник, со­сед­ние сто­ро­ны ко­то­ро­го пер­пен­ди­ку­ляр­ны, а одно из бо­ко­вых ребер пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния и равно 3.

46.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S вер­ши­на, SO  =  4, AC  =  6. Най­ди­те бо­ко­вое ребро SC.

47.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SC=5, AC=6. Най­ди­те длину от­рез­ка SO.

48.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SO=4, SC=5. Най­ди­те длину от­рез­ка AC.

49.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка R  — се­ре­ди­на ребра BC, S  — вер­ши­на. Из­вест­но, что AB  =  1, а SR  =  2. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти.

50.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка N  — се­ре­ди­на ребра BC, S  — вер­ши­на. Из­вест­но, что AB  =  1, а пло­щадь бо­ко­вой по­верх­но­сти равна 3. Най­ди­те длину от­рез­ка SN.

51.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC точка L  — се­ре­ди­на ребра BC, S  — вер­ши­на. Из­вест­но, что SL  =  2, а пло­щадь бо­ко­вой по­верх­но­сти равна 3. Най­ди­те длину от­рез­ка AB.

52.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке M. Пло­щадь тре­уголь­ни­ка ABC равна 3, объем пи­ра­ми­ды равен 1. Най­ди­те длину от­рез­ка MS.

53.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке M. Пло­щадь тре­уголь­ни­ка ABC равна 3, MS  =  1. Най­ди­те объем пи­ра­ми­ды.

54.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де SABC ме­ди­а­ны ос­но­ва­ния пе­ре­се­ка­ют­ся в точке P. Объем пи­ра­ми­ды равен 1, PS  =  1. Най­ди­те пло­щадь тре­уголь­ни­ка ABC.

55.  
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де SABCD с ос­но­ва­ни­ем ABCD бо­ко­вое ребро SA равно 5, сто­ро­на ос­но­ва­ния равна 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та . Най­ди­те объём пи­ра­ми­ды.

56.  
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де все рёбра равны 1. Най­ди­те пло­щадь се­че­ния пи­ра­ми­ды плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны бо­ко­вых рёбер.

57.  
i

Диа­го­наль AC ос­но­ва­ния пра­виль­ной четырёхуголь­ной пи­ра­ми­ды SABCD равна 6. Вы­со­та пи­ра­ми­ды SO равна 4. Най­ди­те длину бо­ко­во­го ребра SB.

58.  
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SA  =  13, BD  =  10. Най­ди­те длину от­рез­ка SO.

59.  
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де SABCD вы­со­та SO равна 13, диа­го­наль ос­но­ва­ния BD равна 8. Точки K и М  — се­ре­ди­ны ребер CD и ВС со­от­вет­ствен­но. Най­ди­те тан­генс угла между плос­ко­стью SMK и плос­ко­стью ос­но­ва­ния AВС.

60.  
i

Пло­щадь бо­ко­вой по­верх­но­сти пя­ти­уголь­ной пи­ра­ми­ды равна 13. Чему будет равна пло­щадь бо­ко­вой по­верх­но­сти пи­ра­ми­ды, если все ее ребра умень­шить в 2 раза?

61.  
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де все рёбра равны 1. Най­ди­те пло­щадь се­че­ния пи­ра­ми­ды плос­ко­стью, про­хо­дя­щей через се­ре­ди­ны бо­ко­вых рёбер.

62.  
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де бо­ко­вое ребро равно 22, а тан­генс угла между бо­ко­вой гра­нью и плос­ко­стью ос­но­ва­ния равен  ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та . Найти сто­ро­ну ос­но­ва­ния пи­ра­ми­ды.

63.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 5, а тан­генс угла между бо­ко­вой гра­нью и плос­ко­стью ос­но­ва­ния равен 0,25 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та . Найти сто­ро­ну ос­но­ва­ния пи­ра­ми­ды.

64.  
i

Най­ди­те объём пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды SABCDEF, если объём тре­уголь­ной пи­ра­ми­ды SABC равен 33.

65.  
i

Даны две пра­виль­ные четырёхуголь­ные пи­ра­ми­ды. Объём пер­вой пи­ра­ми­ды равен 16. У вто­рой пи­ра­ми­ды вы­со­та в 2 раза боль­ше, а сто­ро­на ос­но­ва­ния в 1,5 раза боль­ше, чем у пер­вой. Най­ди­те объём вто­рой пи­ра­ми­ды.

66.  
i

В пра­виль­ной ше­сти­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 17, а сто­ро­на ос­но­ва­ния равна 8. Най­ди­те вы­со­ту пи­ра­ми­ды.

67.  
i

В пра­виль­ной тре­уголь­ной пи­ра­ми­де бо­ко­вое ребро равно 5, а сто­ро­на ос­но­ва­ния равна 3 ко­рень из 3 . Най­ди­те вы­со­ту пи­ра­ми­ды.

68.  
i

Сто­ро­ны ос­но­ва­ния пра­виль­ной ше­сти­уголь­ной пи­ра­ми­ды равны 14, бо­ко­вые ребра равны 25. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти этой пи­ра­ми­ды.