Задания
Версия для печати и копирования в MS Word
Тип 3 № 914
i

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SD=10, SO=6. Най­ди­те длину от­рез­ка AC.

Спрятать решение

Ре­ше­ние.

В пра­виль­ной пи­ра­ми­де вер­ши­на про­еци­ру­ет­ся в центр ос­но­ва­ния, сле­до­ва­тель­но, SO яв­ля­ет­ся вы­со­той пи­ра­ми­ды. Тогда по тео­ре­ме Пи­фа­го­ра

AC=2AO=2OD=2 ко­рень из: на­ча­ло ар­гу­мен­та: SD конец ар­гу­мен­та в квад­ра­те минус SO в квад­ра­те =2 ко­рень из: на­ча­ло ар­гу­мен­та: 100 минус 36 конец ар­гу­мен­та =16.

Ответ: 16.


Аналоги к заданию № 914: 502068 516293 516326 Все

Кодификатор ФИПИ/Решу ЕГЭ: 5.3.3 Пи­ра­ми­да, её ос­но­ва­ние, бо­ко­вые рёбра, вы­со­та, бо­ко­вая по­верх­ность