Пробный ЕГЭ по математике Санкт-Петербург 2015. Вариант 2.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Тетрадь стоит 40 рублей. Какое наибольшее число таких тетрадей можно будет купить на 750 рублей после понижения цены на 10%?
Ответ:
На рисунке жирными точками показано суточное количество осадков, выпадавших в Казани с 3 по 15 февраля 1909 года. По горизонтали указываются числа месяца, по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, сколько дней из данного периода выпадало более 3 миллиметров осадков.
Ответ:
Интернет-провайдер (компания, оказывающая услуги по подключению к сети Интернет) предлагает три тарифных плана.
| Тарифный план | Абонентская плата | Плата за трафик |
| План «0» | Нет | 2,5 руб. за 1 Мб |
| План «500» | 550 руб. за 500 Мб трафика в месяц | 2 руб. за 1 Мб сверх 500 Мб |
| План «800» | 700 руб. за 800 Мб трафика в месяц | 1,5 руб. за 1 Мб сверх 800 Мб |
Пользователь предполагает, что его трафик составит 600 Мб в месяц, и исходя из этого выбирает наиболее дешевый тарифный план. Сколько рублей заплатит пользователь за месяц, если его трафик действительно будет равен 600 Мб?
Ответ:
Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см
1 см (см. рис.). Ответ дайте в квадратных сантиметрах.
Ответ:
Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны, участвующей в конкурсе. Исполнитель из России участвует в конкурсе. В первый день запланировано
Ответ:
Найдите корень уравнения
Ответ:
Вписанный угол окружности на
меньше центрального угла, опирающегося на ту же дугу данной окружности. Найдите вписанный угол. Ответ дайте в градусах.
Ответ:
На рисунке изображен график производной функции
При каком значении x эта функция принимает свое наибольшее значение на отрезке
Ответ:
В правильной треугольной пирамиде SABC точка M — середина ребра AB, S — вершина. Известно, что BC = 3, а площадь боковой поверхности пирамиды
Ответ:
Найдите значение выражения
Ответ:
Высота над землeй подброшенного вверх мяча меняется по закону где h — высота в метрах, t — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трeх метров?
Ответ:
В правильной четырёхугольной призме ABCDA1B1C1D1 ребро AA1 равно 15, а диагональ BD1 равна 17. Найдите площадь сечения призмы плоскостью, проходящей через точки A, A1 и C.
Ответ:
Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 2 минуты дольше, чем вторая труба заполняет резервуар объемом 99 литров?
Ответ:
Найдите наибольшее значение функции на отрезке
Ответ:
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырехугольной пирамиде PABCD, все ребра которой равны 6, точка K ― середина бокового ребра AP.
а) Постройте сечение пирамиды плоскостью, проходящей через точку K и параллельной плоскости BCP.
б) Найдите угол между плоскостью сечения и плоскостью основания пирамиды.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В остроугольном треугольнике KMN проведены высоты KB и NA.
а) Докажите, что угол ABK равен углу ANK.
б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и ∠KMN = 45°.
На следующей странице вам будет предложено проверить их самостоятельно.
В 1-е классы поступает 43 человека: 23 мальчика и 20 девочек. Их распределили по двум классам: в одном должно получиться 22 человека, а в другом ― 21. После распределения посчитали процент мальчиков в каждом классе и полученные числа сложили. Каким должно быть распределение по классам, чтобы полученная сумма была наибольшей?
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все такие значения параметра a, при каждом из которых уравнение не имеет решений.
На следующей странице вам будет предложено проверить их самостоятельно.
В игре «Дротики» есть 20 наружных секторов, пронумерованных от 1 до 20 и два центральных сектора. При попадании в наружный сектор игрок получает количество очков, совпадающее с номером сектора, а за попадание в центральные сектора он получает 25 или 50 очков соответственно. В каждом из наружных секторов есть области удвоения и утроения, которые, соответственно, удваивают или утраивают номинал сектора. Так, например, попадание в сектор 10 (не в зоны удвоения и утроения) дает 10 очков, в зону удвоения сектора ― 20 очков, в зону утроения ― 30 очков.
а) Может ли игрок тремя бросками набрать ровно 161 очко?
б) Может ли игрок четырьмя бросками набрать ровно 235 очков?
в) С помощью какого наименьшего количества бросков, игрок может набрать ровно 947 очков?
На следующей странице вам будет предложено проверить их самостоятельно.