Задания
Версия для печати и копирования в MS Word

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O  — центр ос­но­ва­ния, S  — вер­ши­на, SA  =  13, BD  =  10. Най­ди­те длину от­рез­ка SO.

Спрятать решение

Ре­ше­ние.

В пра­виль­ной пи­ра­ми­де вер­ши­на про­еци­ру­ет­ся в центр ос­но­ва­ния. Сле­до­ва­тель­но, SO яв­ля­ет­ся вы­со­той пи­ра­ми­ды. Тогда по тео­ре­ме Пи­фа­го­ра

SO= ко­рень из: на­ча­ло ар­гу­мен­та: SB конец ар­гу­мен­та в квад­ра­те минус BO в квад­ра­те = ко­рень из: на­ча­ло ар­гу­мен­та: SB конец ар­гу­мен­та в квад­ра­те минус левая круг­лая скоб­ка дробь: чис­ли­тель: BD, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в квад­ра­те = ко­рень из: на­ча­ло ар­гу­мен­та: 169 минус 25 конец ар­гу­мен­та =12.

Ответ: 12.

Кодификатор ФИПИ/Решу ЕГЭ: