Заголовок: Задания 13 ЕГЭ–2023
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 52099779

Задания 13 ЕГЭ–2023

1.  
i

а)  Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка плюс синус 2 x плюс 81 пра­вая круг­лая скоб­ка =4.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

2.  
i

а)  Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка плюс синус 2 x плюс 81 пра­вая круг­лая скоб­ка =4.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби ; минус 2 Пи пра­вая квад­рат­ная скоб­ка .

4.  
i

a)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 13 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­си­нус 2 x минус 9 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус x минус 8 пра­вая круг­лая скоб­ка =0 .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 2 Пи ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

5.  
i

a)  Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка 2 x пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x минус синус 2 x пра­вая круг­лая скоб­ка = x.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 2 Пи ; дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

7.  
i

a)  Ре­ши­те урав­не­ние 8 в сте­пе­ни x минус 5 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 16 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка = 0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию 5 2; ло­га­рифм по ос­но­ва­нию 5 10 пра­вая квад­рат­ная скоб­ка .

8.  
i

a)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка 7 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус x минус ко­си­нус 2 x минус 10 пра­вая круг­лая скоб­ка = 0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; 3 Пи пра­вая квад­рат­ная скоб­ка .

9.  
i

a)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 9 левая круг­лая скоб­ка 3 в сте­пе­ни левая круг­лая скоб­ка 2 x пра­вая круг­лая скоб­ка плюс 5 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус x минус 6 ко­си­нус в квад­ра­те x минус 2 пра­вая круг­лая скоб­ка = x .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 2 Пи ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

13.  
i

a)  Ре­ши­те урав­не­ние  2 синус в кубе x плюс ко­рень из 3 ко­си­нус в квад­ра­те x = ко­рень из 3 .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби ; минус 2 Пи пра­вая квад­рат­ная скоб­ка .

14.  
i

а)  Ре­ши­те урав­не­ние 4 синус в кубе x =3 ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби , дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

15.  
i

a)  Ре­ши­те урав­не­ние  2 синус в квад­ра­те x ко­си­нус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус в квад­ра­те x = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби ; 4 Пи пра­вая квад­рат­ная скоб­ка .

16.  
i

a)  Ре­ши­те урав­не­ние  синус x ко­си­нус 2 x минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус в квад­ра­те x плюс синус x = 0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; 3 Пи пра­вая квад­рат­ная скоб­ка .

17.  
i

a)  Ре­ши­те урав­не­ние  синус x умно­жить на ко­си­нус 2 x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ко­си­нус в квад­ра­те x плюс синус x=0 .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ; 3 Пи пра­вая квад­рат­ная скоб­ка .

18.  
i

а)  Ре­ши­те урав­не­ние  ко­си­нус x умно­жить на ко­си­нус 2 x = ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус в квад­ра­те x плюс ко­си­нус x.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби ; минус Пи пра­вая квад­рат­ная скоб­ка .

19.  
i

а)  Ре­ши­те урав­не­ние  синус x умно­жить на ко­си­нус 2x плюс синус x = ко­рень из 3 ко­си­нус в квад­ра­те x.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

20.  
i

a)  Ре­ши­те урав­не­ние  синус x ко­си­нус 2 x плюс синус x = ко­рень из 3 ко­си­нус в квад­ра­те x.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

21.  
i

а)  Ре­ши­те урав­не­ние  синус 2 x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та синус x = 2 синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка Пи ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

22.  
i

а)  Ре­ши­те урав­не­ние  синус 2x=2 синус x плюс синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 1.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 4 Пи ; минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

23.  
i

а)  Ре­ши­те урав­не­ние  синус 2x плюс 2 ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

24.  
i

a)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 3 x умно­жить на ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 4x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 3 дробь: чис­ли­тель: x левая круг­лая скоб­ка 4x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию 5 2; ло­га­рифм по ос­но­ва­нию 5 27 пра­вая квад­рат­ная скоб­ка .

25.  
i

а)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 4 x умно­жить на ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка дробь: чис­ли­тель: x в квад­ра­те минус 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 4 дробь: чис­ли­тель: x левая круг­лая скоб­ка x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 8 конец дроби .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию 3 4; ло­га­рифм по ос­но­ва­нию 3 49 пра­вая квад­рат­ная скоб­ка .

26.  
i

a)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x в кубе плюс 6 x в квад­ра­те минус 3 x минус 19 пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 100; ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 0,3 пра­вая квад­рат­ная скоб­ка .