ЕГЭ — 2016 по математике. Основная волна 06.06.2016. Вариант 410. Запад
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной треугольной призме АВСА′B′C′ сторона основания АВ равна 6, а боковое ребро АА′ равно 3. На ребре АВ отмечена точка К так, что АК = 1. Точки
а) Докажите, что прямая ВМ перпендикулярна плоскости γ.
б) Найдите расстояние от точки С до плоскости γ.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В остроугольном треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно.
а) Докажите, что прямые ЕН и АС параллельны.
б) Найдите отношение ЕН : АС, если угол АВС равен 30°.
На следующей странице вам будет предложено проверить их самостоятельно.
15-го января планируется взять кредит в банке на шесть месяцев в размере
— 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
| Дата | 15.01 | 15.02 | 15.03 | 15.04 | 15.05 | 15.06 | 15.07 |
| Долг (в млн рублей) | 1 | 0,6 | 0,4 | 0,3 | 0,2 | 0,1 | 0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения а, при каждом из которых уравнение
имеет ровно три различных решения.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написаны числа 2 и 3. За один ход из них можно получить числа a + b и
а) Приведите пример последовательности ходов, после которых одно из чисел, написанных на доске, окажется числом 19.
б) Может ли после 100 ходов одно из двух чисел, написанных на доске, оказаться числом 200?
в) Сделали 1007 ходов, причем на доске никогда не было равных чисел. Какое наименьшее значение может принимать разность большего и меньшего из полученных чисел?
На следующей странице вам будет предложено проверить их самостоятельно.