Вариант № 54194947

ЕГЭ по математике 01.06.2023. Основная волна. Разные города

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 13 № 642789
i

а)  Ре­ши­те урав­не­ние 4 синус в кубе x =3 ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби , дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 13 № 642790
i

а)  Ре­ши­те урав­не­ние  синус x умно­жить на ко­си­нус 2x плюс синус x = ко­рень из 3 ко­си­нус в квад­ра­те x.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 14 № 642348
i

Дана че­ты­рех­уголь­ная пи­ра­ми­да SABCD, в ос­но­ва­нии ко­то­рой лежит ромб ABCD со сто­ро­ной 10. Из­вест­но, что SA = SC = 10 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , SB = 20 и AC = 10.

а)  До­ка­жи­те, что ребро SD пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния пи­ра­ми­ды SABCD.

б)  Най­ди­те рас­сто­я­ние между пря­мы­ми AC и SB.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 15 № 642793
i

Ре­ши­те не­ра­вен­ство:  левая круг­лая скоб­ка \log в квад­ра­те _0,2 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x в квад­ра­те плюс 4x плюс 4 пра­вая круг­лая скоб­ка плюс 1 пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка мень­ше или равно 0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 15 № 642791
i

Ре­ши­те не­ра­вен­ство:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 100 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс 5x минус 14 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс 1 боль­ше или равно 0,5\lg левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 15 № 642792
i

Ре­ши­те не­ра­вен­ство:  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в кубе минус 2x в квад­ра­те минус 4x плюс 8 пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,04 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни 4 .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 16 № 642794
i

В июле 2025 года пла­ни­ру­ет­ся взять кре­дит в банке на сумму 650 тысяч руб­лей на 10 лет. Усло­вия его воз­вра­та та­ко­вы:

  —  в ян­ва­ре 2026, 2027, 2028, 2029 и 2030 годов долг воз­рас­та­ет на 19% по срав­не­нию с кон­цом преды­ду­ще­го года;

  —  в ян­ва­ре 2031, 2032, 2033, 2034 и 2035 годов долг воз­рас­та­ет на 16% по срав­не­нию с кон­цом преды­ду­ще­го года;

  —  с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить часть долга;

  —  в июле каж­до­го года долг дол­жен быть на одну и ту же ве­ли­чи­ну мень­ше долга на июль преды­ду­ще­го года;

  —  к июлю 2035 года кре­дит дол­жен быть по­га­шен пол­но­стью.

Найти общую сумму вы­плат после пол­но­го по­га­ше­ния кре­ди­та.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.