Демонстрационная версия ЕГЭ—2025 по математике. Профильный уровень.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Четырёхугольник ABCD вписан в окружность. Угол ABC равен 103°, угол CAD равен 42°. Найдите угол ABD. Ответ дайте в градусах.
ИЛИ
Площадь параллелограмма ABCD равна 24. Точка E — середина стороны AD. Найдите площадь трапеции BCDE.
ИЛИ
В треугольнике ABC AC = BC, угол C равен 134°. Найдите внешний угол CBD. Ответ дайте в градусах.
ИЛИ
Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из ее диагоналей.
Ответ:
На координатной плоскости изображены векторы и
Найдите скалярное произведение
ИЛИ
Даны векторы
Найдите длину вектора
Ответ:
Одна цилиндрическая кружка вдвое выше второй, зато вторая в полтора раза шире. Найдите отношение объема второй кружки к объему первой.
ИЛИ
Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.
ИЛИ
В сосуде, имеющем форму конуса, уровень жидкости достигает высоты. Объём жидкости равен 4 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?
Ответ:
В группе туристов 20 человек. С помощью жребия они выбирают 7 человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?
ИЛИ
Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше
Ответ:
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,2. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
ИЛИ
В коробке 5 синих, 9 красных и 11 зелёных фломастеров. Случайным образом выбирают два фломастера. Найдите вероятность того, что окажутся выбраны один синий и один красный фломастеры.
Ответ:
Найдите корень уравнения
ИЛИ
Найдите корень уравнения
ИЛИ
Найдите корень уравнения
ИЛИ
Решите уравнение Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
Ответ:
Найдите значение выражения если
ИЛИ
Найдите значение выражения
ИЛИ
Найдите значение выражения
Ответ:
На рисунке изображён график производной функции f(x). На оси абсцисс отмечено десять точек: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10. Сколько из этих точек принадлежит промежуткам возрастания функции f(x)?
ИЛИ
На рисунке изображены график функции и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Ответ:
Перед отправкой тепловоз издал гудок с частотой Гц. Чуть позже издал гудок подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка f больше первого: она зависит от скорости тепловоза по закону
(Гц), где c — скорость звука (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 5 Гц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а
м/с. Ответ выразите в м/с.
Ответ:
Моторная лодка прошла против течения реки 143 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.
ИЛИ
Смешав 45-процентный и 97-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 45-процентного раствора использовали для получения смеси?
ИЛИ
Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 104 литра она заполняет на 5 минут дольше, чем вторая труба?
Ответ:
На рисунке изображены графики функций видов
и
пересекающиеся в точках A и B. Найдите абсциссу точки B.
Ответ:
Найдите наименьшее значение функции на отрезке
ИЛИ
Найдите точку максимума функции
ИЛИ
Найдите точку минимума функции
Ответ:
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильном тетраэдре ABCD точки M и N — середины ребер AB и CD соответственно. Плоскость α перпендикулярна прямой MN и пересекает ребро BC в точке K.
а) Докажите, что прямая MN перпендикулярна рёбрам AB и CD.
б) Найдите площадь сечения тетраэдра ABCD плоскостью α, если известно, что и
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В июле 2025 года планируется взять кредит в банке на сумму 800 тысяч рублей на 10 лет. Условия его возврата таковы:
— каждый январь долг возрастает на r% по сравнению с концом предыдущего года (r — целое число);
— с февраля по июнь необходимо выплатить часть долга;
— в июле 2026, 2027, 2028, 2029, 2030 годов долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года;
— в июле 2030 года долг должен составлять 200 тыс. руб.;
— в июле 2031, 2032, 2033, 2034, 2035 годов долг должен быть на другую одну и ту же сумму меньше долга на июль предыдущего года;
— к июлю 2035 года долг должен быть полностью погашен.
Найдите r, если общая сумма выплат по кредиту составила 1480 тыс. руб.
На следующей странице вам будет предложено проверить их самостоятельно.
Пятиугольник ABCDE вписан в окружность. Известно, что и
а) Докажите, что
б) Найдите длину диагонали BE, если
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых система уравнений
имеет ровно два различных решения.
На следующей странице вам будет предложено проверить их самостоятельно.
Из пары натуральных чисел (a; b), где за один ход получают пару (a + b; a – b).
а) Можно ли за несколько таких ходов получить из пары (100; 1) пару, большее число в которой равно 400?
б) Можно ли за несколько таких ходов получить из пары (100; 1) пару (806; 788)?
в) Какое наименьшее a может быть в паре (a; b), из которой за несколько ходов можно получить пару (806; 788)?
На следующей странице вам будет предложено проверить их самостоятельно.