Вариант № 52083633

ЕГЭ по математике 27.03.2023. Досрочная волна. Москва

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 1 № 639637
i

Ост­рый угол В пря­мо­уголь­но­го тре­уголь­ни­ка равен 66°. Най­ди­те угол между вы­со­той СН и ме­ди­а­ной СМ, про­ве­ден­ны­ми из вер­ши­ны пря­мо­го угла. Ответ дайте в гра­ду­сах.


Ответ:

2
Тип 3 № 639638
i

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, D, A1, B, C, B1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1, у ко­то­ро­го AB = 3, AD = 4, AA_1 = 5.


Ответ:

3
Тип 4 № 639639
i

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что орел вы­па­дет ровно один раз.


Ответ:

4
Тип 5 № 639640
i

В тор­го­вом цен­тре два оди­на­ко­вых ав­то­ма­та про­да­ют жвач­ку. Ве­ро­ят­ность того, что к концу дня в ав­то­ма­те за­кон­чит­ся жвач­ка, равна 0,4. Ве­ро­ят­ность того, что жвач­ка за­кон­чит­ся в обоих ав­то­ма­тах, равна 0,2. Най­ди­те ве­ро­ят­ность того, что к концу дня жвач­ка оста­нет­ся в обоих ав­то­ма­тах.


Ответ:

5

Най­ди­те ко­рень урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 19 плюс 5x конец ар­гу­мен­та =2.


Ответ:

6

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 48 конец ар­гу­мен­та ко­си­нус в квад­ра­те дробь: чис­ли­тель: 19 Пи , зна­ме­на­тель: 12 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та .


Ответ:

7
Тип 8 № 639643
i

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 11). Най­ди­те ко­ли­че­ство точек экс­тре­му­ма функ­ции f(x) на от­рез­ке [−10; 10].


Ответ:

8
Тип 9 № 639644
i

Во­до­лаз­ный ко­ло­кол, со­дер­жа­щий в на­чаль­ный мо­мент вре­ме­ни  v = 3 моль воз­ду­ха объeмом V_1=8 л, мед­лен­но опус­ка­ют на дно водоeма. При этом про­ис­хо­дит изо­тер­ми­че­ское сжа­тие воз­ду­ха до ко­неч­но­го объeма V_2. Ра­бо­та, со­вер­ша­е­мая водой при сжа­тии воз­ду­ха, опре­де­ля­ет­ся вы­ра­же­ни­ем A = альфа v T ло­га­рифм по ос­но­ва­нию 2 дробь: чис­ли­тель: V_1 , зна­ме­на­тель: V_2 конец дроби (Дж), где  альфа =5,75 по­сто­ян­ная, а T = 300К тем­пе­ра­ту­ра воз­ду­ха. Какой объeм V_2 (в лит­рах) ста­нет за­ни­мать воз­дух, если при сжа­тии газа была со­вер­ше­на ра­бо­та в 10 350 Дж?


Ответ:

9
Тип 10 № 639645
i

Один ма­стер может вы­пол­нить заказ за 12 часов, а дру­гой  — за 6 часов. За сколь­ко часов вы­пол­нят заказ оба ма­сте­ра, ра­бо­тая вме­сте?


Ответ:

10
Тип 11 № 639646
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции вида f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =a в сте­пе­ни x плюс b. Най­ди­те зна­че­ние f (−8).


Ответ:

11

12

а)  Ре­ши­те урав­не­ние:  ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка плюс синус 2 x плюс 81 пра­вая круг­лая скоб­ка =4.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби ; минус 2 Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

13
Тип 14 № 639649
i

Дан тет­ра­эдр ABCD. Точки K, L, M, N лежат на реб­рах AC, AD, DB и BC со­от­вет­ствен­но, так, что че­ты­рех­уголь­ник KLMN  — квад­рат со сто­ро­ной 2, AK : KC  =  2 : 3.

а)  До­ка­жи­те, что BM : MD =2: 3.

б)  Най­ди­те рас­сто­я­ние от точки C до плос­ко­сти KLМN, если из­вест­но, что объем тет­ра­эд­ра ABCD равен 25.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 15 № 639650
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: 4 в сте­пе­ни x плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 36, зна­ме­на­тель: 2 в сте­пе­ни x минус 5 конец дроби плюс дробь: чис­ли­тель: 4 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка плюс 4, зна­ме­на­тель: 2 в сте­пе­ни x минус 8 конец дроби мень­ше или равно 5 умно­жить на 2 в сте­пе­ни x плюс 7.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15

В июле 2023 года пла­ни­ру­ет­ся взять кре­дит на не­ко­то­рую сумму. Усло­вия воз­вра­та та­ко­вы:

  — каж­дый ян­варь долг уве­ли­чи­ва­ет­ся на 25% по срав­не­нию с кон­цом преды­ду­ще­го года;

  — с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить одним пла­те­жом часть долга.

Сколь­ко руб­лей пла­ни­ру­ет­ся взять в банке, если из­вест­но, что кре­дит будет пол­но­стью по­га­шен тремя рав­ны­ми пла­те­жа­ми (то есть за три года) и общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та на 65 500 руб­лей боль­ше суммы, взя­той в кре­дит?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 639652
i

Точка В лежит на от­рез­ке АС. Пря­мая, про­хо­дя­щая через точку A, ка­са­ет­ся окруж­но­сти с диа­мет­ром BC в точке M и вто­рой раз пе­ре­се­ка­ет окруж­ность с диа­мет­ром АВ в точке K. Про­дол­же­ние от­рез­ка МВ пе­ре­се­ка­ет окруж­ность с диа­мет­ром AB в точке D.

а)  До­ка­жи­те, что пря­мые AD и МC па­рал­лель­ны.

б)  Най­ди­те пло­щадь тре­уголь­ни­ка DBC, если AK  =  5 и KM  =  25.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 18 № 639653
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус 2x конец ар­гу­мен­та на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 25x в квад­ра­те минус a в квад­ра­те пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус 2x конец ар­гу­мен­та на­ту­раль­ный ло­га­рифм левая круг­лая скоб­ка 5x минус a пра­вая круг­лая скоб­ка

имеет ровно один ко­рень.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 19 № 639654
i

Дано на­ту­раль­ное число. К этому числу можно либо при­ба­вить утро­ен­ную сумму его цифр, либо вы­честь утро­ен­ную сумму его цифр. После при­бав­ле­ния или вы­чи­та­ния суммы цифр, число долж­но остать­ся на­ту­раль­ным.

а)  Можно ли по­лу­чить из числа 128 число 29?

б)  Можно ли по­лу­чить из числа 128 число 31?

в)  Какое наи­мень­шее число можно было по­лу­чить из числа 128?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.