Задания
Версия для печати и копирования в MS Word
Спрятать решение

Ре­ше­ние.

а)  Раз­ло­жим на мно­жи­те­ли:

2 синус x умно­жить на ко­си­нус x плюс 2 синус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та =0 рав­но­силь­но левая круг­лая скоб­ка ко­си­нус x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2 синус x минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та пра­вая круг­лая скоб­ка =0 рав­но­силь­но
 рав­но­силь­но со­во­куп­ность вы­ра­же­ний  новая стро­ка ко­си­нус x= минус 1,  новая стро­ка синус x= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби ,  конец со­во­куп­но­сти . рав­но­силь­но со­во­куп­ность вы­ра­же­ний  новая стро­ка x= Пи плюс 2 Пи k,  новая стро­ка x= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k,  новая стро­ка x= дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k,  конец со­во­куп­но­сти .k при­над­ле­жит Z .

б)  С по­мо­щью чис­ло­вой окруж­но­сти отберём корни, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка . По­лу­чим числа:  минус 3 Пи и  минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби .

 

Ответ: а)  левая фи­гур­ная скоб­ка Пи плюс 2 Пи k, дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k, дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи k: k при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка ; б)  минус 3 Пи ;  минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 3 конец дроби .


-------------
Дублирует задание № 514609.
Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
Обос­но­ван­но по­лу­че­ны вер­ные от­ве­ты в обоих пунк­тах.2
Обос­но­ван­но по­лу­чен вер­ный ответ в пунк­те а),

ИЛИ

по­лу­че­ны не­вер­ные от­ве­ты из-за вы­чис­ли­тель­ной ошиб­ки, но при этом име­ет­ся вер­ная по­сле­до­ва­тель­ность всех шагов ре­ше­ния пунк­та а) и пунк­та б).

1
Ре­ше­ние не со­от­вет­ству­ет ни од­но­му из кри­те­ри­ев, пе­ре­чис­лен­ных выше.0
Мак­си­маль­ный балл2
Источники: