Всего: 24 1–20 | 21–24
Добавить в вариант
В правильной треугольной пирамиде SABC боковое ребро SA = 6, а сторона основания AB = 4.
а) Докажите, что утроенный объем пирамиды SABC равен произведению ребра SC на площадь сечения пирамиды плоскостью, проходящей через ребро AB перпендикулярно ребру SC.
б) Найдите площадь этого сечения.
Дана пирамида SABC, точки D и E лежат соответственно на ребрах SA и SB, причем SD : DA = 1 : 2 и SE : EB = 1 : 2. Через точки D и E проведена плоскость, параллельная ребру SC. В каком отношении эта плоскость делит объем пирамиды?
У Северного полюса, на острове Шпицберген в чертогах Снежной королевы хранился небывалой красоты ледяной алмаз в форме тетраэдра SABC. В Новогоднюю ночь злой тролль похитил часть алмаза, и эта часть имеет форму тетраэдра SAKM. Его верные ученики и от оставшейся части взяли себе кусок и тоже в форме тетраэдра — KABC. Снежной королеве осталась часть алмаза, и она имеет форму тетраэдра CAKM. Какую часть первоначального алмаза оставили Снежной королеве тролль и ученики? В треугольнике ABC угол B равен 90°, AB = 3, BC = 4, AS перпендикулярно плоскости ABC, AS = 4, AK перпендикулярно SB, AM перпендикулярно SC.
Основанием пирамиды служит параллелограмм ABCD. Через сторону AB и середину K бокового ребра проведена плоскость. Найти отношение объемов получившихся частей.
В правильной треугольной призме ABCA1B1C1 все рёбра равны 6. На рёбрах AA1 и CC1 отмечены точки M и N соответственно, причём AM = 2, CN = 1.
а) Докажите, что плоскость MNB1 разбивает призму на два многогранника, объёмы которых равны.
б) Найдите объём тетраэдра MNBB1.
В правильной треугольной призме ABCA1B1C1 все рёбра равны 8. На рёбрах AA1 и CC1 отмечены точки M и N соответственно, причём AM = 3, CN = 1.
а) Докажите, что плоскость MNB1 разбивает призму на два многогранника, объёмы которых равны.
б) Найдите объём тетраэдра MNBB1.
Дана правильная треугольная призма ABCA1B1C1 со стороной основания 12 и высотой 3. Точка K — середина BC, точка L лежит на стороне A1B1 так, что В1L = 5. Точка М — середина A1C1. Через точки K и L проведена плоскость таким образом, что она параллельна прямой AC.
а) Докажите, что указанная выше плоскость перпендикулярна прямой MB.
б) Найдите объем пирамиды с вершиной в точке В, у которой основанием является сечение призмы плоскостью.
На ребрах AB и BC треугольной пирамиды ABCD отмечены точки M и N соответственно, причём Точки P и Q — середины сторон DA и DC соответственно.
а) Доказать, что P, Q, M и N лежат в одной плоскости.
б) Найти отношение объемов многогранников, на которые плоскость PQM разбивает пирамиду.
На рёбрах AB и BC треугольной пирамиды ABCD отмечены точки M и N соответственно, причём AM : BM = CN : NB = 1 : 2. Точки P и Q — середины ребер DA и DC соответственно.
а) Докажите, что P, Q, M и N лежат в одной плоскости.
б) Найти отношение объёмов многогранников, на которые плоскость PQM разбивает пирамиду.
На ребрах AB и BC треугольной пирамиды ABCD отмечены точки M и N соответственно, причём Точки P и Q — середины сторон DA и DC соответственно.
а) Доказать, что P, Q, M и N лежат в одной плоскости.
б) Найти отношение объемов многогранников, на которые плоскость PQM разбивает пирамиду.
Ребро куба ABCDA1B1C1D1 равно 6. Точки K, L и M — центры граней ABCD, AA1D1D и CC1D1D соответственно.
а) Докажите, что B1KLM — правильная пирамида.
б) Найдите объём B1KLM.
Дана правильная четырёхугольная пирамида SABCD с вершиной S. Точка M расположена на SD так, что SM : SD = 2 : 3. P — середина ребра AD, а Q — середина ребра BC.
а) Докажите, что сечение пирамиды плоскостью MQP — равнобедренная трапеция.
б) Найдите отношение объёмов многогранников, на которые плоскость MQP разбивает пирамиду.
В основании прямой призмы лежит равнобокая трапеция АВСD с основаниями АD = 30, ВС = 12 и боковой стороной АВ = 15. Через точки
и С проведена плоскость β.
а) Докажите, что плоскость β делит объем призмы в отношении 2 : 5.
б) Найдите объем пирамиды с вершиной в точке А, основанием которой является сечение призмы плоскостью β, если известно, что
В конусе с вершиной в точке Р высота равна 1, а образующая равна 2. В основании конуса провели диаметр CD и перпендикулярную ему хорду АВ. Известно, что хорда АВ удалена от центра основания на расстояние, равное 1.
а) Докажите, что треугольник РАВ прямоугольный.
б) Найдите сумму объемов пирамид САРВ и DАРВ.
В параллелепипеде ABCDA1B1C1D1 точка К — середина ребра АВ.
а) Докажите, что плоскость СКD1 делит объем параллелепипеда в отношении 7 : 17.
б) Найдите расстояние от точки D до плоскости СКD1, если известно, что ребра АВ, АD и АА1 попарно перпендикулярны и равны соответственно 6, 4 и 6.
На боковых ребрах EA, EB, EC правильной четырехугольной пирамиды ABCDE расположены точки M, N, K соответственно, причем EM : EA = 1 : 2, EN : EB = 2 : 3, EK : EC = 1 : 3 .
а) Постройте сечение пирамиды плоскостью, проходящей через точки M, N, K.
б) В каком отношении плоскость (MNK) делит объем пирамиды?
В основании прямой призмы ABCDA1B1C1D1 лежит прямоугольная трапеция АВСD с основаниями ВС и АD (ВС < АD), в которой АВ = 5, CD = 4, ВС = 6. Через точку С и середину ребра ВВ1 параллельно B1D проведена плоскость β.
а) Докажите, что плоскость β пересекает ребро АА1 в такой точке Р, что А1Р = 3АР.
б) Найдите объем пирамиды с вершиной в точке В, основанием которой служит сечение призмы плоскостью β, если известно, что ВВ1 = 16.
На ребре SD правильной четырёхугольной пирамиды SABCD отмечена точка M, причем Точки P и Q — середины рёбер BC и AD соответственно
а) Докажите, что сечение пирамиды плоскостью MPQ является равнобедренной трапецией.
б) Найдите отношение объемов многогранников, на которые плоскость MPQ разбивает пирамиду.
Точки M, N и P лежат на боковых ребрах правильной треугольной призмы и делят их в отношении
а) В каком отношении делит объем призмы плоскость, проходящая через точки M, N и P?
б) Докажите, что MNP — прямоугольный треугольник, если сторона основания призмы равна а боковое ребро равно 60.
В кубе сечение проходит через вершину A и центры граней
и
а) Найдите, в каком отношении секущая плоскость делит объем куба.
б) Найдите угол между плоскостью грани ABCD и плоскостью сечения.

