Вариант № 45394812

Задания 13 ЕГЭ–2022

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип 13 № 627989

Дан правильный треугольник ABC. Точка D лежит вне плоскости ABC,  косинус \angle BAD = косинус \angle DAC=0,3.

а) Докажите, что прямые AD и BC перпендикулярны.

б) Найдите расстояние между прямыми AD и BC, если AC = 6.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 13 № 628006

Вне плоскости правильного треугольника ABC расположена точка D, причем  косинус \angle DAC = косинус \angle DAB = 0,2.

а) Докажите, что прямые AD и BC перпендикулярны.

б) Найдите расстояние между этими прямыми, если AB = 2.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 13 № 628026

Дана треугольная пирамида SABC. Основание высоты SO этой пирамиды является серединой отрезка CH — высоты треугольника ABC.

а) Докажите, что AC в квадрате минус BC в квадрате =AS в квадрате минус BS в квадрате .

б) Найдите объём пирамиды SABC, если AB=25, AC=10, BC=5 корень из 13, SC=3 корень из 10.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 13 № 628036

Различные точки A, B и C лежат на окружности основания конуса с вершиной S так, что отрезок AB является её диаметром. Угол между образующей конуса и плоскостью основания равен 60°.

a) Докажите, что  косинус \angle A S C плюс косинус \angle C S B=1,5.

б) Найдите объем тетраэдра SABC, если S C=1 и  косинус \angle ASC= дробь: числитель: 2, знаменатель: 3 конец дроби .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 13 № 630120

В основании пирамиды SABCD лежит трапеция ABCD с большим основанием AD. Диагонали пересекаются в точке O. Точки M и N — середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO.

а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией.

б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=10, BC=8, SO=8, а прямая SO перпендикулярна прямой AD.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 13 № 630156

В основании пирамиды SABCD лежит трапеция ABCD с большим основанием AD. Диагонали пересекаются в точке O. Точки M и N — середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO.

а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией.

б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=7, BC=5, SO=4, а прямая SO перпендикулярна прямой AD.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 13 № 630217

В кубе ABCDA1B1C1D1 точки M и N являются серединами рёбер AB и AD соответственно.

а) Докажите, что прямые B1N и CM перпендикулярны.

б) Плоскость α проходит через точки N и B1 параллельно прямой CM. Найдите расстояние от точки C до плоскости α, если B_1 N =6.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

8
Тип 13 № 630201

В кубе ABCDA1B1C1D1 точки M и N являются серединами рёбер AB и AD соответственно.

а) Докажите, что прямые B1N и CM перпендикулярны.

б) Плоскость α проходит через точки N и B1 параллельно прямой CM. Найдите расстояние от точки C до плоскости α, если B_1 N = 3 корень из 5.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

9
Тип 13 № 630127

В прямоугольном параллелепипеде ABCDA1B1C1D1 на диагонали BD1 отмечена точка N так, что BN:ND_1=1:2. Точка O — середина отрезка CB1.

а) Докажите, что прямая NO проходит через точку A.

б) Найдите объём параллелепипеда ABCDA1B1C1D1, если длина отрезка NO равна расстоянию между прямыми BD1 и CB1 и равна  корень из 2 .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

10
Тип 13 № 630163

В прямоугольном параллелепипеде ABCDA1B1C1D1 на диагонали BD1 отмечена точка N так, что BN:ND_1=1:2. Точка O — середина отрезка CB1.

а) Докажите, что прямая NO проходит через точку A.

б) Найдите объём параллелепипеда ABCDA1B1C1D1, если длина отрезка NO равна расстоянию между прямыми BD1 и CB1 и равна  корень из 6 .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

11
Тип 13 № 630098

Точка М — середина бокового ребра SC правильной четырёхугольной пирамиды SABCD, точка N лежит на стороне основания ВС. Плоскость α проходит через точки М и N параллельно боковому ребру SA.

а) Плоскость α пересекает ребро DS в точке L. Докажите, что BN:NC=DL:LS.

б) Пусть BN:NC = 1:2. Найдите отношение объёмов многогранников, на которые плоскость α разбивает пирамиду.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

12
Тип 13 № 630195

Точка O — точка пересечения диагоналей грани CDD1C1 куба ABCDA1B1C1D1. Плоскость DA1C1 пересекает диагональ BD1 в точке F.

а) Докажите, что BF:FD_1=A_1F:FO.

б) Точки M и N — середины ребер AB и AA1, соответственно. Найдите угол между прямой MN и плоскостью DA1C1.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

13
Тип 13 № 630185

Дана правильная четырёхугольная пирамида SABCD. Точка M — середина SA, на ребре SB отмечена точка N так, что SN : NB =1: 2.

а) Докажите, что плоскость CMN параллельна прямой SD.

б) Найдите площадь сечения пирамиды плоскостью CMN, если все рёбра равны 12.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 13 № 630695

Точка M — середина ребра AA1 треугольной призмы ABCA1B1C1, в основании которой лежит треугольник ABC. Плоскость α проходит через точки B и B1 перпендикулярно прямой C1M.

а) Докажите, что одна из диагоналей грани ACC1A1 равна одному из ребер этой грани.

б) Найдите расстояние от точки C до плоскости α, если плоскость α делит ребро AC в отношении 1:5, считая от вершины A, AC = 20, AA1 = 32.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 13 № 630702

Точка M — середина ребра AA1 треугольной призмы ABCA1B1C1, в основании которой лежит треугольник ABC. Плоскость α проходит через точки B и B1 перпендикулярно прямой C1M.

а) Докажите, что одна из диагоналей грани ACC1A1 равна одному из ребер этой грани.

б) Найдите расстояние от точки C до плоскости α, если плоскость α делит ребро AC в отношении 1:3, считая от вершины A, AC = 10, AA1 = 12.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 13 № 630709

На сфере α выбрали пять точек: A, B, C, D и S. Известно, что AB = BC = CD = DA = 4, SA = SB = SC = SD = 7.

а) Докажите, что многогранник SABCD — правильная четырёхугольная пирамида.

б) Найдите объём многогранника SABCD.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.