Вариант № 44976144

ЕГЭ по математике 28.03.2022. Досрочная волна. Санкт-Петербург. Вариант 2

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 13 № 628025
i

а)  Ре­ши­те урав­не­ние: 81 в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка минус 12 умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка ко­си­нус x пра­вая круг­лая скоб­ка плюс 27=0.

б)  Опре­де­ли­те, какие из его кор­ней при­над­ле­жат от­рез­ку  левая квад­рат­ная скоб­ка минус 4 Пи ; минус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 14 № 628026
i

Дана тре­уголь­ная пи­ра­ми­да SABC. Ос­но­ва­ние вы­со­ты SO этой пи­ра­ми­ды яв­ля­ет­ся се­ре­ди­ной от­рез­ка CH  — вы­со­ты тре­уголь­ни­ка  ABC.

а)  До­ка­жи­те, что AC в квад­ра­те минус BC в квад­ра­те =AS в квад­ра­те минус BS в квад­ра­те .

б)  Най­ди­те объём пи­ра­ми­ды SABC, если AB=25, AC=10, BC=5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та , SC=3 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 15 № 628027
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка 16x в сте­пе­ни 4 пра­вая круг­лая скоб­ка плюс 11, зна­ме­на­тель: \log в квад­ра­те _4x минус 9 конец дроби \geqslant минус 1.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 16 № 628028
i

15-го де­каб­ря пла­ни­ру­ет­ся взять кре­дит в банке на 19 ме­ся­цев. Усло­вия воз­вра­та та­ко­вы:

  — 1-го числа каж­до­го ме­ся­ца долг воз­рас­та­ет на 2% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

  — со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

  — 15-го числа каж­до­го ме­ся­ца с 1-го по 18-й долг дол­жен быть на 50 тысяч руб­лей мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца;

  — к 15-му числу 19-го ме­ся­ца кре­дит дол­жен быть пол­но­стью по­га­шен.

Какой долг будет 15-го числа 18-го ме­ся­ца, если общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та со­ста­вит 1209 тысяч руб­лей?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 17 № 628029
i

Дана рав­но­бед­рен­ная тра­пе­ция ABCD. На бо­ко­вой сто­ро­не AB и боль­шем ос­но­ва­нии AD взяты со­от­вет­ствен­но точки F и E так, что FE па­рал­лель­но CD, а FC=ED.

а)  До­ка­жи­те, что угол BCF равен углу AFE.

б)  Най­ди­те пло­щадь тра­пе­ции ABCD , если DE=5BF, FE=8 и пло­щадь тра­пе­ции FCDE равна 27 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: xy в квад­ра­те минус 3xy минус 3y плюс 9, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 3 конец ар­гу­мен­та конец дроби =0,y=ax конец си­сте­мы .

имеет ровно два раз­лич­ных ре­ше­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 628031
i

Даны че­ты­ре по­сле­до­ва­тель­ных на­ту­раль­ных числа. Каж­дое из чисел по­де­ли­ли на одну из его цифр, не рав­ную нулю, а затем че­ты­ре по­лу­чен­ных ре­зуль­та­та сло­жи­ли.

а)  Может ли по­лу­чен­ная сумма рав­нять­ся 386?

б)  Может ли по­лу­чен­ная сумма рав­нять­ся 9,125?

в)  Какое наи­боль­шее целое зна­че­ние может при­ни­мать по­лу­чен­ная сумма, если из­вест­но, что каж­дое из ис­ход­ных чисел не мень­ше 200 и не боль­ше 699?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.