Вариант № 47379323

ЕГЭ по математике 02.06.2022. Основная волна. Санкт-Петербург, Москва, центр. Вариант 338

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 13 № 630205
i

а)  Ре­ши­те урав­не­ние  синус 2x минус 2 синус левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка минус x пра­вая круг­лая скоб­ка минус 1=0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 14 № 630201
i

В кубе ABCDA1B1C1D1 точки M и N яв­ля­ют­ся се­ре­ди­на­ми рёбер AB и AD со­от­вет­ствен­но.

а)  До­ка­жи­те, что пря­мые B1N и CM пер­пен­ди­ку­ляр­ны.

б)  Плос­кость α про­хо­дит через точки N и B1 па­рал­лель­но пря­мой CM. Най­ди­те рас­сто­я­ние от точки C до плос­ко­сти α, если B_1 N = 3 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 16 № 630226
i

В июле 2026 года пла­ни­ру­ет­ся взять кре­дит на три года. Усло­вия его воз­вра­та та­ко­вы:

  — каж­дый ян­варь долг будет воз­рас­тать на 30% по срав­не­нию с кон­цом преды­ду­ще­го года;

  — с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить одним пла­те­жом часть долга;

  — пла­те­жи в 2027 и в 2028 годах долж­ны быть по 300 тыс. руб.;

  — к июлю 2029 года долг дол­жен быть вы­пла­чен пол­но­стью.

Из­вест­но, что платёж в 2029 году будет равен 860,6 тыс. руб. Какую сумму пла­ни­ру­ет­ся взять в кре­дит?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5

На сто­ро­не BC па­рал­ле­ло­грам­ма ABCD вы­бра­на точка M такая, что A M=M C.

а)  До­ка­жи­те, что центр впи­сан­ной в тре­уголь­ник AMD окруж­но­сти лежит на диа­го­на­ли AC.

б)  Най­ди­те ра­ди­ус впи­сан­ной в тре­уголь­ник AMD окруж­но­сти, если A B=7, BC=21,  \angle B A D=60 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

 \left|x в квад­ра­те плюс a в квад­ра­те минус 7 x минус 5 a|=x плюс a

имеет че­ты­ре раз­лич­ных корня.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7

С трёхзнач­ным чис­лом про­из­во­дят сле­ду­ю­щую опе­ра­цию: вы­чи­та­ют из него сумму его цифр, а затем по­лу­чив­шу­ю­ся раз­ность делят на 3.

а)  Могло ли в ре­зуль­та­те такой опе­ра­ции по­лу­чить­ся число 201?

б)  Могло ли в ре­зуль­та­те такой опе­ра­ции по­лу­чить­ся число 251?

в)  Сколь­ко раз­лич­ных чисел может по­лу­чить­ся в ре­зуль­та­те такой опе­ра­ции из чисел от 600 до 999 вклю­чи­тель­но?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.