ЕГЭ по математике 02.06.2022. Основная волна. Санкт-Петербург. Вариант 321
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В основании пирамиды SABCD лежит трапеция ABCD с большим основанием AD. Диагонали трапеции пересекаются в точке O. Точки M и N — середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO.
а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией.
б) Найдите площадь сечения пирамиды SABCD плоскостью α, если
а прямая SO перпендикулярна прямой AD.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
В июле 2026 года планируется взять кредит на три года в размере 900 тыс. рублей. Условия его возврата таковы:
— каждый январь долг будет возрастать на 20% по сравнению с концом предыдущего года;
— с февраля по июнь каждого года необходимо выплатить часть долга;
— платежи в 2027 и 2028 годах должны быть равны;
— к июлю 2029 года долг должен быть выплачен полностью.
Известно, что платёж в 2029 году составит 499,2 тыс. рублей. Сколько рублей составит платёж
На следующей странице вам будет предложено проверить их самостоятельно.
В параллелограмме ABCD угол BAC вдвое больше угла CAD. Биссектриса угла BAC пересекает отрезок BC в точке L. На продолжении стороны CD за точку D выбрана такая точка E, что
а) Докажите, что
б) Найдите EL, если
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых уравнение
имеет более двух различных корней.
На следующей странице вам будет предложено проверить их самостоятельно.
Есть четыре коробки: в первой коробке 121 камень, во второй — 122, в третьей — 123, а в четвёртой коробке камней нет. За один ход берут по одному камню из любых трёх коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов.
а) Могло ли в первой коробке оказаться 121 камней, во второй — 122, в третье — 119, а в четвёртой — 4?
б) Могло ли в четвёртой коробке оказаться 366 камней?
в) Какое наибольшее число камней могло оказаться в первой коробке?
На следующей странице вам будет предложено проверить их самостоятельно.