ЕГЭ по математике 27.06.2022. Основная волна, резервный день. Санкт-Петербург, Москва, центр. Вариант 501
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Точка M — середина ребра AA1 треугольной призмы ABCA1B1C1, в основании которой лежит треугольник ABC. Плоскость α проходит через точки
а) Докажите, что одна из диагоналей грани ACC1A1 равна одному из ребер этой грани.
б) Найдите расстояние от точки C до
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
15-го января планируется взять кредит в банке на некоторый срок (целое число месяцев). Условия его возврата таковы:
— 1-го числа каждого месяца долг будет возрастать на 5 % по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо одним платежом выплатить часть долга;
— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
На сколько месяцев планируется взять кредит, если известно, что сумма всех платежей после полного погашения кредита будет на 25 % больше суммы, взятой в кредит?
На следующей странице вам будет предложено проверить их самостоятельно.
Точка D лежит на основании AC равнобедренного треугольника ABC. Точки I и J — центры окружностей, описанных около треугольников ABD и CBD соответственно.
а) Докажите, что прямые BI и DJ параллельны.
б) Найдите IJ, если AC = 12,
На следующей странице вам будет предложено проверить их самостоятельно.
Найти все значения a, при каждом из которых уравнение
имеет ровно три различных корня.
На следующей странице вам будет предложено проверить их самостоятельно.
У ювелира есть 47 полудрагоценных камней, масса каждого из которых — целое число граммов, не меньшее 100 (некоторые камни могут иметь равную массу). Эти камни распределили по трем кучам: в первой куче n1 камней, во второй — n2 камней, в третьей — n3 камней, причем n1 < n2 < n3. Суммарная масса (в граммах) камней в первой куче равна S1, во второй — S2, а в третьей — S3.
а) Может ли выполняться неравенство S1 > S2 > S3?
б) Может ли выполняться неравенство S1 > S2 > S3, если масса любого камня не превосходит 105 граммов?
в) Известно, что масса любого камня не превосходит k граммов. Найдите наименьшее целое значение k, для которого может выполняться неравенство S1 > S2 > S3.
На следующей странице вам будет предложено проверить их самостоятельно.