Вариант № 47573923

ЕГЭ по математике 27.06.2022. Основная волна, резервный день. Санкт-Петербург, Москва, центр. Вариант 502

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1

а)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 9 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка ко­рень из 2 синус x плюс синус 2x плюс 9 пра­вая круг­лая скоб­ка = 1.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби ; минус 2 Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2

Точка M  — се­ре­ди­на ребра AA1 тре­уголь­ной приз­мы ABCA1B1C1, в ос­но­ва­нии ко­то­рой лежит тре­уголь­ник ABC. Плос­кость α про­хо­дит через точки B и B1 пер­пен­ди­ку­ляр­но пря­мой C1M.

а)  До­ка­жи­те, что одна из диа­го­на­лей грани ACC1A1 равна од­но­му из ребер этой грани.

б)  Най­ди­те рас­сто­я­ние от точки C до плос­ко­сти α, если плос­кость α делит ребро AC в от­но­ше­нии 1:5, счи­тая от вер­ши­ны A, AC  =  20, AA1  =  32.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4

15-го ян­ва­ря пла­ни­ру­ет­ся взять кре­дит в банке на не­ко­то­рый срок (целое число ме­ся­цев). Усло­вия его воз­вра­та та­ко­вы:

  — 1-го числа каж­до­го ме­ся­ца долг будет воз­рас­тать на 1 % по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

  — со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо одним пла­те­жом вы­пла­тить часть долга;

  — 15-го числа каж­до­го ме­ся­ца долг дол­жен быть на одну и ту же сумму мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца.

На сколь­ко ме­ся­цев пла­ни­ру­ет­ся взять кре­дит, если из­вест­но, что сумма всех пла­те­жей после пол­но­го по­га­ше­ния кре­ди­та будет на 20 % боль­ше суммы, взя­той в кре­дит?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5

Точка D лежит на ос­но­ва­нии AC рав­но­бед­рен­но­го тре­уголь­ни­ка ABC. Точки I и J  — цен­тры окруж­но­стей, опи­сан­ных около тре­уголь­ни­ков ABD и CBD со­от­вет­ствен­но.

а)  До­ка­жи­те, что пря­мые BI и DJ па­рал­лель­ны.

б)  Най­ди­те IJ, если AC  =  16,  ко­си­нус \angleBDC = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 18 № 630699
i

Найти все зна­че­ния a, при ко­то­рых урав­не­ние

 ко­рень из: на­ча­ло ар­гу­мен­та: x в сте­пе­ни 4 минус 4x в квад­ра­те плюс a в квад­ра­те конец ар­гу­мен­та = x в квад­ра­те плюс 2x минус a

имеет ровно три раз­лич­ных корня.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 630700
i

У юве­ли­ра есть 38 по­лу­дра­го­цен­ных кам­ней, масса каж­до­го из ко­то­рых  — целое число грам­мов, не мень­шее 100 (не­ко­то­рые камни могут иметь рав­ную массу). Эти камни рас­пре­де­ли­ли по трем кучам: в пер­вой куче n1 кам­ней, во вто­рой  — n2 кам­ней, в тре­тьей  — n3 кам­ней, при­чем n1 < n2 < n3. Сум­мар­ная масса (в грам­мах) кам­ней в пер­вой куче равна S1, во вто­рой  — S2, а в тре­тьей  — S3.

а)  Может ли вы­пол­нять­ся не­ра­вен­ство S1 > S2 > S3?

б)  Может ли вы­пол­нять­ся не­ра­вен­ство S1 > S2 > S3, если масса лю­бо­го камня не пре­вос­хо­дит 108 грам­мов?

в)  Из­вест­но, что масса лю­бо­го камня не пре­вос­хо­дит k грам­мов. Най­ди­те наи­мень­шее целое зна­че­ние k, для ко­то­ро­го может вы­пол­нять­ся не­ра­вен­ство S1 > S2 > S3.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.