Задания 18 ЕГЭ–2022
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Каждое из четырёх подряд идущих натуральных чисел разделили на их первые цифры и результаты сложили в сумму S.
а) Может ли быть ?
б) Может ли быть ?
в) Найдите наибольшее целое S, если все четыре числа лежат в отрезке от 400 до 999 включительно.
На следующей странице вам будет предложено проверить их самостоятельно.
Даны четыре последовательных натуральных числа. Каждое из чисел поделили на одну из его цифр, не равную нулю, а затем четыре полученных результата сложили.
а) Может ли полученная сумма равняться 386?
б) Может ли полученная сумма равняться 9,125?
в) Какое наибольшее целое значение может принимать полученная сумма, если известно, что каждое из исходных чисел не меньше 200 и не больше 699?
На следующей странице вам будет предложено проверить их самостоятельно.
Каждое из четырех последовательных натуральных чисел, последняя цифра которых не равна нулю, разделили на его последнюю цифру. Полученные результаты сложили и назвали S. Тогда:
а) может ли
б) может ли
в) если числа были трехзначные, то какое наибольшее целое значение S могло получиться?
На следующей странице вам будет предложено проверить их самостоятельно.
По кругу расставлено N различных натуральных чисел, каждое из которых не превосходит 425. Сумма любых четырёх идущих подряд чисел делится на 4, а сумма любых трёх идущих подряд чисел нечётна.
а) Может ли N быть равным 280?
б) Может ли N быть равным 149?
в) Найдите наибольшее значение N.
На следующей странице вам будет предложено проверить их самостоятельно.
Есть четыре коробки: в первой коробке 101 камень, во второй — 102, в третьей — 103, а в четвёртой коробке камней нет. За один ход берут по одному камню из любых трёх коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов.
а) Могло ли в первой коробке оказаться 97 камней, во второй — 102, в третьей — 103, а в четвёртой — 4?
б) Могло ли в четвёртой коробке оказаться 306 камней?
в) Какое наибольшее число камней могло оказаться в первой коробке?
На следующей странице вам будет предложено проверить их самостоятельно.
Есть четыре коробки: в первой коробке 121 камень, во второй — 122, в третьей — 123, а в четвёртой коробке камней нет. За один ход берут по одному камню из любых трёх коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов.
а) Могло ли в первой коробке оказаться 121 камней, во второй — 122, в третье — 119, а в четвёртой — 4?
б) Могло ли в четвёртой коробке оказаться 366 камней?
в) Какое наибольшее число камней могло оказаться в первой коробке?
На следующей странице вам будет предложено проверить их самостоятельно.
Имеются три коробки: в первой — 97 камней, во второй — 104 камня, в третьей коробке камней нет. За один ход берут по одному камню из любых двух коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов.
а) Может ли в первой коробке оказаться 97 камней, во второй — 89, в третьей — 15?
б) Может ли в третьей коробке оказаться 201 камень?
в) Известно, что в первой коробке оказался 1 камень. Какое наибольшее число камней могло оказаться в третьей коробке?
На следующей странице вам будет предложено проверить их самостоятельно.
С трёхзначным числом производят следующую операцию: вычитают из него сумму его цифр, а затем получившуюся разность делят
а) Могло ли в результате такой операции получиться число 300?
б) Могло ли в результате такой операции получиться число 151?
в) Сколько различных чисел может получиться в результате такой операции из чисел от 100 до 600 включительно?
На следующей странице вам будет предложено проверить их самостоятельно.
С трёхзначным числом производят следующую операцию: вычитают из него сумму его цифр, а затем получившуюся разность делят на 3.
а) Могло ли в результате такой операции получиться число 201?
б) Могло ли в результате такой операции получиться число 251?
в) Сколько различных чисел может получиться в результате такой операции из чисел от 600 до 999 включительно?
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написано N различных натуральных чисел, каждое из которых не превосходит 99. Для любых двух написанных на доске чисел a и b, таких, что a < b, ни одно из написанных чисел не делится на
а) Могли ли на доске быть написаны какие-то два числа из чисел 18, 19 и 20?
б) Среди написанных на доске чисел есть 17. Может ли N быть равно 25?
в) Найдите наибольшее значение N.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написано N различных натуральных чисел, каждое из которых не превосходит 159. Для любых двух написанных на доске чисел a и b, таких, что a < b, ни одно из написанных чисел не делится на
а) Могли ли на доске быть написаны какие-то два числа из чисел 28, 29 и 30?
б) Среди написанных на доске чисел есть 13. Может ли N быть равно 20?
в) Найдите наибольшее значение N.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написано N различных натуральных чисел, каждое из которых не превосходит 27. Для каждых двух написанных чисел a и b таких, что ни одно из написанных чисел не делится на
а) Могли ли на доске быть написаны какие-то два числа из чисел 4, 5, 6?
б) Среди написанных на доске чисел есть 5. Может ли N быть равным 7?
в) Найдите наибольшее значение N.
На следующей странице вам будет предложено проверить их самостоятельно.
У ювелира есть 38 полудрагоценных камней, масса каждого из которых — целое число граммов, не меньшее 100 (некоторые камни могут иметь равную массу). Эти камни распределили по трем кучам: в первой куче n1 камней, во второй — n2 камней, в третьей — n3 камней, причем n1 < n2 < n3. Суммарная масса (в граммах) камней в первой куче равна S1, во второй — S2, а в третьей — S3.
а) Может ли выполняться неравенство S1 > S2 > S3?
б) Может ли выполняться неравенство S1 > S2 > S3, если масса любого камня не превосходит 108 граммов?
в) Известно, что масса любого камня не превосходит k граммов. Найдите наименьшее целое значение k, для которого может выполняться неравенство S1 > S2 > S3.
На следующей странице вам будет предложено проверить их самостоятельно.
У ювелира есть 47 полудрагоценных камней, масса каждого из которых — целое число граммов, не меньшее 100 (некоторые камни могут иметь равную массу). Эти камни распределили по трем кучам: в первой куче n1 камней, во второй — n2 камней, в третьей — n3 камней, причем n1 < n2 < n3. Суммарная масса (в граммах) камней в первой куче равна S1, во второй — S2, а в третьей — S3.
а) Может ли выполняться неравенство S1 > S2 > S3?
б) Может ли выполняться неравенство S1 > S2 > S3, если масса любого камня не превосходит 105 граммов?
в) Известно, что масса любого камня не превосходит k граммов. Найдите наименьшее целое значение k, для которого может выполняться неравенство S1 > S2 > S3.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написано несколько различных натуральных чисел. Дробная часть среднего арифметического этих чисел равна 0,32 (то есть если вычесть из среднего арифметического этих чисел 0,32, то получится целое число).
а) Могло ли на доске быть написано меньше 100 чисел?
б) Могло ли на доске быть написано меньше 20 чисел?
в) Найдите наименьшее возможное значение среднего арифметического этих чисел.
На следующей странице вам будет предложено проверить их самостоятельно.