СДАМ ГИА






Каталог заданий. Применение производной к исследованию функций
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции , опре­де­лен­ной на ин­тер­ва­ле . Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции . В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

За­да­ние 7 № 6429
Показать решение

2

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−2; 12). Най­ди­те сумму точек экс­тре­му­ма функ­ции y = f(x).

За­да­ние 7 № 7549
3

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−6; 8). Опре­де­ли­те ко­ли­че­ство целых точек, в ко­то­рых про­из­вод­ная функ­ции по­ло­жи­тель­на.

За­да­ние 7 № 27487
Показать решение

4

На ри­сун­ке изоб­ра­жен гра­фик функ­ции , опре­де­лен­ной на ин­тер­ва­ле (−5; 5). Опре­де­ли­те ко­ли­че­ство целых точек, в ко­то­рых про­из­вод­ная функ­ции  от­ри­ца­тель­на.

За­да­ние 7 № 27488
Показать решение

5

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−5; 5). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции па­рал­лель­на пря­мой y = 6 или сов­па­да­ет с ней.

За­да­ние 7 № 27489
Показать решение

6

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−2; 12). Най­ди­те сумму точек экс­тре­му­ма функ­ции f(x).

За­да­ние 7 № 27490
Показать решение

7

На ри­сун­ке изоб­ражён гра­фик y=f'(x) — про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (-8; 3). В какой точке от­рез­ка [-3; 2 ] функ­ция f(x) при­ни­ма­ет наи­боль­шее зна­че­ние?

За­да­ние 7 № 27491
8

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−8; 4). В какой точке от­рез­ка [−7; −3] f(x) при­ни­ма­ет наи­мень­шее зна­че­ние?

 

 

За­да­ние 7 № 27492
9

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−7; 14). Най­ди­те ко­ли­че­ство точек мак­си­му­ма функ­ции f(x) на от­рез­ке [−6; 9].

 

За­да­ние 7 № 27494
Показать решение

10

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−18; 6). Най­ди­те ко­ли­че­ство точек ми­ни­му­ма функ­ции f(x) на от­рез­ке [−13;1].

 

За­да­ние 7 № 27495
Показать решение

11

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 11). Най­ди­те ко­ли­че­ство точек экс­тре­му­ма функ­ции f(x) на от­рез­ке [−10; 10].

За­да­ние 7 № 27496
Показать решение

12

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−7; 4). Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции f(x). В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

 

За­да­ние 7 № 27497
Показать решение

13

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−5; 7). Най­ди­те про­ме­жут­ки убы­ва­ния функ­ции f(x). В от­ве­те ука­жи­те сумму целых точек, вхо­дя­щих в эти про­ме­жут­ки.

 

За­да­ние 7 № 27498
14

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−11; 3). Най­ди­те про­ме­жут­ки воз­рас­та­ния функ­ции f(x). В от­ве­те ука­жи­те длину наи­боль­ше­го из них.

 

За­да­ние 7 № 27499
Показать решение

15

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−2; 12). Най­ди­те про­ме­жут­ки убы­ва­ния функ­ции f(x). В от­ве­те ука­жи­те длину наи­боль­ше­го из них.

За­да­ние 7 № 27500
Показать решение

16

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−10; 2). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции f(x) па­рал­лель­на пря­мой y = −2x − 11 или сов­па­да­ет с ней.

 

За­да­ние 7 № 27501
17

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f(x), опре­де­лен­ной на ин­тер­ва­ле (−4; 8). Най­ди­те точку экс­тре­му­ма функ­ции f(x) на от­рез­ке [−2; 6].

За­да­ние 7 № 27502
18

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f(x) , опре­де­лен­ной на ин­тер­ва­ле (−3; 9) . Най­ди­те ко­ли­че­ство точек, в ко­то­рых про­из­вод­ная функ­ции f(x) равна 0.

За­да­ние 7 № 119971
Показать решение

19

На ри­сун­ке изоб­ражён гра­фик - про­из­вод­ной функ­ции f(x).На оси абс­цисс от­ме­че­ны во­семь точек: x1, x2, x3, ..., x8. Сколь­ко из этих точек лежит на про­ме­жут­ках воз­рас­та­ния функ­ции f(x) ?

 

 

 

За­да­ние 7 № 317541
Показать решение

20

На ри­сун­ке изоб­ражён гра­фик про­из­вод­ной функ­ции и во­семь точек на оси абс­цисс: ,. В сколь­ких из этих точек функ­ция убы­ва­ет?

 

За­да­ние 7 № 317542
Показать решение

21

На ри­сун­ке изоб­ра­жен гра­фик функ­ции и от­ме­че­ны точки −2, −1, 1, 4. В какой из этих точек зна­че­ние про­из­вод­ной наи­мень­шее? В от­ве­те ука­жи­те эту точку.

 

За­да­ние 7 № 317544
Показать решение

22

На ри­сун­ке изоб­ражён гра­фик функ­ции у = f'(x) — про­из­вод­ной функ­ции f(x) опре­делённой на ин­тер­ва­ле (1; 10). Най­ди­те точку ми­ни­му­ма функ­ции f(x).

За­да­ние 7 № 501188

Аналоги к заданию № 501188: 501682 501937



Источник: МИОО: Тре­ни­ро­воч­ная работа по ма­те­ма­ти­ке 09.04.2013 ва­ри­ант МА1601.
23

Функ­ция y = f (x) опре­де­ле­на и не­пре­рыв­на на от­рез­ке [−5; 5]. На ри­сун­ке изоб­ражён гра­фик её про­из­вод­ной. Най­ди­те точку x0, в ко­то­рой функ­ция при­ни­ма­ет наи­мень­шее зна­че­ние, если  f (−5) ≥ f (5).

За­да­ние 7 № 505119


Источник: ЕГЭ 28.04.2014 по ма­те­ма­ти­ке. До­сроч­ная волна. Ва­ри­ант 2.
Показать решение

24

Функ­ция опре­де­ле­на на про­ме­жут­ке На ри­сун­ке изоб­ра­жен гра­фик ее про­из­вод­ной. Най­ди­те абс­цис­су точки, в ко­то­рой функ­ция при­ни­ма­ет наи­боль­шее зна­че­ние.

За­да­ние 7 № 508225


Источник: Пробный эк­за­мен Санкт-Петербург 2015. Вариант 1.
Показать решение

25

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−3; 9). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции па­рал­лель­на пря­мой y = 12 или сов­па­да­ет с ней.

 

За­да­ние 7 № 510918
26

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y = f(x), опре­де­лен­ной на ин­тер­ва­ле (−6; 5). Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции па­рал­лель­на пря­мой y = −6.

 

За­да­ние 7 № 510938
27

Ма­те­ри­аль­ная точка дви­жет­ся от на­чаль­но­го до ко­неч­но­го по­ло­же­ния. На ри­сун­ке изоб­ражён гра­фик её дви­же­ния. На оси абс­цисс от­кла­ды­ва­ет­ся время в се­кун­дах, на оси ор­ди­нат — рас­сто­я­ние от на­чаль­но­го по­ло­же­ния точки (в мет­рах). Най­ди­те сред­нюю ско­рость дви­же­ния точки. Ответ дайте в мет­рах в се­кун­ду.

За­да­ние 7 № 512488
28

Ма­те­ри­аль­ная точка дви­жет­ся от на­чаль­но­го до ко­неч­но­го по­ло­же­ния. На ри­сун­ке изоб­ражён гра­фик её дви­же­ния. На оси абс­цисс от­кла­ды­ва­ет­ся время в се­кун­дах, на оси ор­ди­нат — рас­сто­я­ние от на­чаль­но­го по­ло­же­ния точки (в мет­рах). Най­ди­те сред­нюю ско­рость дви­же­ния точки. Ответ дайте в мет­рах в се­кун­ду.

За­да­ние 7 № 512498


Источник: СтатГрад: Тренировочная ра­бо­та по ма­те­ма­ти­ке 18.12.2015 ва­ри­ант МА10211.

Пройти тестирование по этим заданиям



     О проекте

© Гущин Д. Д., 2011—2017


СПб ГУТ! С! Ф! У!
общее/сайт/предмет


Рейтинг@Mail.ru
Яндекс.Метрика