
Найдите все значения а, при каждом из которых система уравнений
имеет ровно четыре различных решения.
Решение. Решим второе уравнение системы.
При a = 0 исходная система имеет единственное решение —
При при подстановке в первое уравнение системы
получаются квадратные уравнения. Значит, исходная система уравнений имеет ровно 4 различных решения тогда и только тогда, когда каждое из этих уравнений имеет ровно два корня и пара чисел (1; 1) не является решением исходной системы.
При x = 1 получаем:
Это квадратное уравнение имеет ровно два корня при положительном дискриминанте:
При получаем:
Это квадратное уравнение имеет два корня при положительном дискриминанте:
Пара чисел (1;1) является решением исходной системы при то есть a = −3.
Таким образом, исходная система уравнений имеет ровно 4 решения при
Ответ:
| Критерии оценивания выполнения задания | Баллы |
|---|---|
| Обоснованно получен правильный ответ. | 4 |
| С помощью верного рассуждения получено множество значений a, возможно, отличающееся от искомого только включением точек | 3 |
| С помощью верного рассуждения получены промежутки ИЛИ Получен неверный ответ из-за вычислительной ошибки, но при этом выполнены все шаги решения. | 2 |
| Верно рассмотрен хотя бы один и случаев решения и получен или промежуток ИЛИ Задача верно сведена к исследованию взаимного расположения окружности и прямых (аналитически или графически). | 1 |
| Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
PDF-версии: