Вариант № 19628596

ЕГЭ — 2018. Основная волна 01.06.2018. Вариант 313 (часть 2)

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 13 № 520878
i

а)  Ре­ши­те урав­не­ние 2 синус левая круг­лая скоб­ка 2x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка минус ко­си­нус x= ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та синус 2x минус 1.

б)  Опре­де­ли­те, какие из его кор­ней при­над­ле­жат от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби ; 4 Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 14 № 520879
i

В ци­лин­дре об­ра­зу­ю­щая пер­пен­ди­ку­ляр­на плос­ко­сти ос­но­ва­ния. На окруж­но­сти од­но­го из ос­но­ва­ний ци­лин­дра вы­бра­ны точки А и В, а на окруж­но­сти дру­го­го ос­но­ва­ния  — точки В1 и С1, при­чем ВВ1  — об­ра­зу­ю­щая ци­лин­дра, а от­ре­зок АС1 пе­ре­се­ка­ет ось ци­лин­дра.

а)  До­ка­жи­те, что угол АВС1 пря­мой.

б)  Най­ди­те рас­сто­я­ние от точки B до пря­мой AC1, если AB  =  21, BB1  =  12, B1C1  =  16.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 15 № 520880
i

Ре­ши­те не­ра­вен­ство  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 8x в квад­ра­те плюс 7 пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те плюс x плюс 1 пра­вая круг­лая скоб­ка боль­ше или равно ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: x, зна­ме­на­тель: x плюс 5 конец дроби плюс 7 пра­вая круг­лая скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 17 № 520881
i

Окруж­ность с цен­тром в точке O вы­се­ка­ет на всех сто­ро­нах тра­пе­ции ABCD рав­ные хорды.

а)  До­ка­жи­те, что бис­сек­три­сы всех углов тра­пе­ции пе­ре­се­ка­ют­ся в одной и той же точке.

б)  Най­ди­те вы­со­ту тра­пе­ции, если окруж­ность пе­ре­се­ка­ет бо­ко­вую сто­ро­ну AB в точ­ках K и L так, что AK  =  15, KL  =  6, LB  =  5.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5

15-го де­каб­ря пла­ни­ру­ет­ся взять кре­дит в банке на 11 ме­ся­цев. Усло­вия воз­вра­та та­ко­вы:

  — 1-го числа каж­до­го ме­ся­ца долг воз­рас­та­ет на 3% по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца;

  — со 2-го по 14-е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

  — 15-го числа каж­до­го ме­ся­ца с 1-го по 10-й долг дол­жен быть на 80 тысяч руб­лей мень­ше долга на 15-е число преды­ду­ще­го ме­ся­ца;

  — к 15-му числу 11-го ме­ся­ца кре­дит дол­жен быть пол­но­стью по­га­шен.

Какой долг будет 15-го числа 10-го ме­ся­ца, если общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та со­ста­вит 1198 тысяч руб­лей?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 18 № 520883
i

Найти все зна­че­ния a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x плюс ay минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс ay минус 5a пра­вая круг­лая скоб­ка =0,x в квад­ра­те плюс y в квад­ра­те =16 конец си­сте­мы .

имеет ровно че­ты­ре раз­лич­ных ре­ше­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 520884
i

В шко­лах № 1 и № 2 уча­щи­е­ся пи­са­ли тест. Из каж­дой школы тест пи­са­ли по край­ней мере два уча­щих­ся, а сум­мар­но тест пи­са­ли 9 уча­щих­ся. Каж­дый уча­щий­ся, пи­сав­ший тест, на­брал на­ту­раль­ное ко­ли­че­ство бал­лов. Ока­за­лось, что в каж­дой школе сред­ний балл был целым чис­лом. После этого, один из уча­щих­ся, пи­сав­ших тест, пе­ре­шел из школы № 1 в школу № 2, а сред­ние баллы за тест были пе­ре­счи­та­ны в обеих шко­лах.

а)  Мог ли сред­ний балл в школе № 1 умень­шить­ся в 10 раз?

б)  Сред­ний балл в школе № 1 умень­шил­ся на 10%, сред­ний балл в школе № 2 также умень­шил­ся на 10%. Мог ли пер­во­на­чаль­ный сред­ний балл в школе № 2 рав­нять­ся 7?

в)  Сред­ний балл в школе № 1 умень­шил­ся на 10%, сред­ний балл в школе № 2 также умень­шил­ся на 10%. Най­ди­те наи­мень­шее зна­че­ние пер­во­на­чаль­но­го сред­не­го балла в школе № 2.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.