ЕГЭ по математике 25.06.2018. Основная волна, резервный день. Вариант 992 (часть 2)
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение:
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильном тетраэдре АВСD точка Н — центр грани АВС, а точка М — середина ребра СD.
а) Докажите, что прямые АВ и СD перпендикулярны.
б) Найдите угол между прямыми DН и ВМ.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Точка Е — середина стороны BС квадрата АВСD. Серединные перпендикуляры к отрезкам АЕ и ЕС пересекаются в точке O.
а) Докажите, что
б) Найдите BO : OD.
На следующей странице вам будет предложено проверить их самостоятельно.
Зависимость объёма Q (в шт.) купленного у фирмы товара от цены Р Доход от продажи товара составляет РQ рублей. Затраты на производство Q единиц товара составляют
рублей. Прибыль равна разности дохода от продажи товара и затрат на его производство. Стремясь привлечь внимание покупателей, фирма уменьшила цену товара на 20%, однако её прибыль не изменилась. На сколько процентов следует увеличить сниженную цену, чтобы добиться наибольшей прибыли?
На следующей странице вам будет предложено проверить их самостоятельно.
Найти все значения a, при каждом из которых уравнение
имеет хотя бы один корень.
На следующей странице вам будет предложено проверить их самостоятельно.
а) Можно ли вычеркнуть несколько цифр из числа 123456789 так, чтобы получилось число, кратное 72?
б) Можно ли вычеркнуть несколько цифр из числа 846927531 так, чтобы получилось число, кратное 72?
в) Какое наибольшее количество цифр можно вычеркнуть из числа 124875963 так, чтобы получилось число, кратное 72?
На следующей странице вам будет предложено проверить их самостоятельно.