Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 54969675
1.  
i

Угол между двумя со­сед­ни­ми сто­ро­на­ми пра­виль­но­го мно­го­уголь­ни­ка, равен 160°. Най­ди­те число вер­шин мно­го­уголь­ни­ка.

2.  
i

Две сто­ро­ны пря­мо­уголь­ни­ка ABCD равны 6 и 8. Най­ди­те длину раз­но­сти век­то­ров \overrightarrowAB и \overrightarrowAD.

3.  
i

Одна ци­лин­дри­че­ская круж­ка вдвое выше вто­рой, зато вто­рая в пол­то­ра раза шире. Най­ди­те от­но­ше­ние объ­е­ма вто­рой круж­ки к объ­е­му пер­вой.

4.  
i

Из мно­же­ства на­ту­раль­ных чисел от 10 до 19 на­уда­чу вы­би­ра­ют одно число. Ка­ко­ва ве­ро­ят­ность того, что оно де­лит­ся на 3?

5.  
i

Артём гу­ля­ет по парку. Он вы­хо­дит из точки S и, дойдя до оче­ред­ной раз­вил­ки, с рав­ны­ми шан­са­ми вы­би­ра­ет сле­ду­ю­щую до­рож­ку, но не воз­вра­ща­ет­ся об­рат­но. Най­ди­те ве­ро­ят­ность того, что таким об­ра­зом он вый­дет к пруду или фон­та­ну.

6.  
i

Най­ди­те ко­рень урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: дробь: чис­ли­тель: 6, зна­ме­на­тель: 4x минус 54 конец дроби конец ар­гу­мен­та = дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби .

8.  
i

На ри­сун­ке изоб­ра­жен гра­фик не­ко­то­рой функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . Поль­зу­ясь ри­сун­ком, вы­чис­ли­те опре­де­лен­ный ин­те­грал  при­над­ле­жит t пре­де­лы: от 1 до 5, f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка dx.

9.  
i

На ри­сун­ке изоб­ра­же­на схема ван­то­во­го моста. Вер­ти­каль­ные пи­ло­ны свя­за­ны про­ви­са­ю­щей цепью. Тросы, ко­то­рые сви­са­ют с цепи и под­дер­жи­ва­ют по­лот­но моста, на­зы­ва­ют­ся ван­та­ми.

Введём си­сте­му ко­ор­ди­нат: ось Oy на­пра­вим вер­ти­каль­но вдоль од­но­го из пи­ло­нов, а ось Ox на­пра­вим вдоль по­лот­на моста, как по­ка­за­но на ри­сун­ке.

В этой си­сте­ме ко­ор­ди­нат линия, по ко­то­рой про­ви­са­ет цепь моста, имеет урав­не­ние y=0,005x в квад­ра­те минус 0,74x плюс 25, где x и y из­ме­ря­ют­ся в мет­рах. Най­ди­те длину ванты, рас­по­ло­жен­ной в 30 мет­рах от пи­ло­на. Ответ дайте в мет­рах.

10.  
i

Вова и Гоша ре­ша­ют за­да­чи. За час Вова может ре­шить на две за­да­чи боль­ше, чем Гоша (при этом оба за час ре­ша­ют целое ко­ли­че­ство задач). Из­вест­но, что вме­сте они решат 33 за­да­чи на 1 час 15 минут быст­рее, чем это сде­лал бы один Вова. За какое время Гоша может ре­шить 20 задач? Ответ дайте в часах.

11.  
i

На ри­сун­ке изоб­ра­же­ны гра­фи­ки функ­ций f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =5x плюс 9 и g левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =ax в квад­ра­те плюс bx плюс c, ко­то­рые пе­ре­се­ка­ют­ся в точ­ках A и B. Най­ди­те абс­цис­су точки B.

13.  
i

а)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка x в сте­пе­ни 4 .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию 9 дробь: чис­ли­тель: 1, зна­ме­на­тель: { конец дроби 82; ло­га­рифм по ос­но­ва­нию 9 8 пра­вая квад­рат­ная скоб­ка .

14.  
i

Ос­но­ва­ни­ем пря­мой че­ты­рех­уголь­ной приз­мы ABCDA'B'C'D' яв­ля­ет­ся квад­рат ABCD со сто­ро­ной 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , вы­со­та приз­мы равна 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та . Точка K  — се­ре­ди­на ребра BB'. Через точки K и С' про­ве­де­на плос­кость α, па­рал­лель­ная пря­мой BD'.

а)  До­ка­жи­те, что се­че­ние приз­мы плос­ко­стью α яв­ля­ет­ся рав­но­бед­рен­ным тре­уголь­ни­ком.

б)  Най­ди­те пе­ри­метр тре­уголь­ни­ка, яв­ля­ю­ще­го­ся се­че­ни­ем приз­мы плос­ко­стью α.

15.  
i

Ре­ши­те не­ра­вен­ство 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка боль­ше или равно 3.

16.  
i

15-⁠го ян­ва­ря пла­ни­ру­ет­ся взять кре­дит в банке на шесть ме­ся­цев в раз­ме­ре 1 млн руб­лей. Усло­вия его воз­вра­та та­ко­вы:

— 1-⁠го числа каж­до­го ме­ся­ца долг уве­ли­чи­ва­ет­ся на r про­цен­тов по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца, где r  — целое число;

— со 2-⁠го по 14-⁠е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

— 15-⁠го числа каж­до­го ме­ся­ца долг дол­жен со­став­лять не­ко­то­рую сумму в со­от­вет­ствии со сле­ду­ю­щей таб­ли­цей.

 

Дата15.0115.0215.0315.0415.0515.0615.07
Долг
(в млн руб­лей)
10,60,40,30,20,10

 

Най­ди­те наи­боль­шее зна­че­ние r, при ко­то­ром общая сумма вы­плат будет мень­ше 1,2 млн руб­лей.

17.  
i

В вы­пук­лом четырёхуголь­ни­ке ABCD из­вест­ны сто­ро­ны и диа­го­наль: AB  =  3, BC  =  CD  =  5, AD  =  8, AC  =  7.

а)  До­ка­жи­те, что во­круг этого четырёхуголь­ни­ка можно опи­сать окруж­ность.

б)  Най­ди­те BD.

18.  
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус a конец дроби пра­вая круг­лая скоб­ка в квад­ра­те минус левая круг­лая скоб­ка a плюс 9 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус a конец дроби пра­вая круг­лая скоб­ка плюс 2a левая круг­лая скоб­ка 9 минус a пра­вая круг­лая скоб­ка =0

имеет ровно 4 ре­ше­ния.

19.  
i

На доске было на­пи­са­но 20 на­ту­раль­ных чисел (не обя­за­тель­но раз­лич­ных), каж­дое из ко­то­рых не пре­вос­хо­дит 40. Вме­сто не­ко­то­рых из чисел (воз­мож­но, од­но­го) на доске на­пи­са­ли числа, мень­шие пер­во­на­чаль­ных на еди­ни­цу. Числа, ко­то­рые после этого ока­за­лись рав­ны­ми 0, с доски стёрли.

а)  Могло ли ока­зать­ся так, что сред­нее ариф­ме­ти­че­ское чисел на доске уве­ли­чи­лось?

б)  Сред­нее ариф­ме­ти­че­ское пер­во­на­чаль­но на­пи­сан­ных чисел рав­ня­лось 27. Могло ли сред­нее ариф­ме­ти­че­ское остав­ших­ся на доске чисел ока­зать­ся рав­ным 34?

в)  Сред­нее ариф­ме­ти­че­ское пер­во­на­чаль­но на­пи­сан­ных чисел рав­ня­лось 27. Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние сред­не­го ариф­ме­ти­че­ско­го чисел, ко­то­рые оста­лись на доске.