А. Ларин. Тренировочный вариант № 370.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Ребро куба ABCDA1B1C1D1 равно 8. На ребрах ВС и A1D1 взяты соответственно точки К и L, а на ребре CD — точки М и N так, что
а) Докажите, что косинус угла между прямыми KN и ML равен
б) Найдите расстояние между прямыми KN и ML.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
Фабрика получила заказ на изготовление 1005 деталей типа А и 2010 деталей типа В. Каждый из 192 рабочих фабрики затрачивает на изготовление двух деталей
На следующей странице вам будет предложено проверить их самостоятельно.
Высота BH треугольника ABC в раз больше радиуса описанной около треугольника ABC окружности с центром O.
а) Доказать, что прямая, проходящая через точки K и M — основания перпендикуляров, опущенных из
б) Найдите радиус описанной около треугольника ABC окружности, если AB = 6,
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра p, при каждом из которых уравнение
имеет единственный корень.
На следующей странице вам будет предложено проверить их самостоятельно.
На доске было написано 20 натуральных чисел (не обязательно различных), каждое из которых не превосходит 40. Вместо некоторых из чисел (возможно, одного) на доске написали числа, меньшие первоначальных на единицу. Числа, которые после этого оказались равными 0, с доски стёрли.
а) Могло ли оказаться так, что среднее арифметическое чисел на доске увеличилось?
б) Среднее арифметическое первоначально написанных чисел равнялось 27. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 34?
в) Среднее арифметическое первоначально написанных чисел равнялось 27. Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.
На следующей странице вам будет предложено проверить их самостоятельно.