В выпуклом четырёхугольнике ABCD известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8, AC = 7.
а) Докажите, что вокруг этого четырёхугольника можно описать окружность.
б) Найдите BD.
Найдём косинусы углов ABC и ADC в треугольниках ABC и ADC соответственно:
поэтому ABC = 120°. Далее,
поэтому ADC = 60°.
Таким образом, сумма противоположных углов четырехугольника равна 180°, поэтому вокруг него можно описать окружность. Для вписанного четырёхугольника справедлива теорема Птолемея: произведение диагоналей четырёхугольника равно сумме произведений его противоположных сторон. Тогда
то есть
откуда
Ответ: б)
Приведем решение пункта б) Тофига Алиева без использования теоремы Птолемея.
Заметим, что поскольку
Пусть
тогда в треугольнике BAD по теореме косинусов
В треугольнике BCD по теореме косинусов
Приравнивая выражения для BD2, получим
Тогда
Приведем идею решения Юрия Зорина.
Углы BAC и BDC равны как вписанные углы, опирающиеся на дугу BC. По теореме косинусов найдём косинус угла BAC (он равен 11/14). Далее, зная, что косинусы равных углов равны, из треугольника BDC найдем по теореме косинусов искомый отрезок BD.

