Демонстрационная версия ЕГЭ—2022 по математике. Профильный уровень.
В демонстрационном варианте представлены конкретные примеры заданий, не исчерпывающие всего многообразия возможных формулировок заданий на каждой позиции варианта экзаменационной работы.
В демонстрационном варианте представлено по несколько примеров заданий на некоторых позициях экзаменационной работы. В реальных вариантах экзаменационной работы на каждой позиции будет предложено только одно задание.
Версия для печати и копирования в MS Word
Найдите корень уравнения:
ИЛИ
Найдите корень уравнения
ИЛИ
Найдите корень уравнения
ИЛИ
Решите уравнение Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
Ответ:
В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.
ИЛИ
Вероятность того, что мотор холодильника прослужит более 1 года, равна 0,8, а вероятность того, что он прослужит более 2 лет, равна 0,6. Какова вероятность того, что мотор прослужит более 1 года, но не более 2 лет?
Ответ:
Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32°.
ИЛИ
Площадь треугольника ABC равна 24, DE — средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE.
ИЛИ
В ромбе ABCD угол DBA равен 13°. Найдите угол BCD. Ответ дайте в градусах.
ИЛИ
Стороны параллелограмма равны 24 и 27. Высота, опущенная на меньшую из этих сторон, равна 18. Найдите высоту, опущенную на бо́льшую сторону параллелограмма.
Ответ:
Найдите если
и
ИЛИ
Найдите значение выражения:
ИЛИ
Найдите значение выражения:
Ответ:
В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в
ИЛИ
Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.
ИЛИ
Через точку, лежащую на высоте прямого кругового конуса и делящую её в отношении 1 : 2, считая от вершины конуса, проведена плоскость, параллельная его основанию и делящая конус на две части. Каков объём той части конуса, которая примыкает к его основанию, если объём всего конуса
Ответ:
На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: x1, x2, ..., x9. Среди этих точек найдите все точки, в которых производная функции y = f(x) отрицательна. В ответе укажите количество найденных точек.
ИЛИ
На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0 . Найдите значение производной функции f(x) в точке x0.
Ответ:
Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 749 МГц. Скорость погружения батискафа вычисляется по формуле где
м/с
— частота испускаемых импульсов, f — частота отражённого от дна сигнала, регистрируемая приёмником
Ответ:
Весной катер идёт против течения реки в раза
раза
ИЛИ
Смешав 45-процентный и 97-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 45-процентного раствора использовали для получения смеси?
ИЛИ
Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими автомобилями через
Ответ:
На рисунке изображён график функции вида где числа a, b и c — целые. Найдите
Ответ:
Симметричную игральную кость бросили
ИЛИ
В городе 48 % взрослого населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15 %. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».
Ответ:
Найдите наименьшее значение функции на отрезке
ИЛИ
Найдите точку максимума функции
ИЛИ
Найдите точку минимума функции
Ответ:
а) Решите уравнение:
б) Определите, какие из его корней принадлежат отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Все рёбра правильной треугольной призмы ABCA1B1C1 имеют длину 6. Точки M и N — середины рёбер AA1 и A1C1 соответственно.
а) Докажите, что прямые BM и MN перпендикулярны.
б) Найдите угол между плоскостями BMN и ABB1.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство
На следующей странице вам будет предложено проверить их самостоятельно.
15-го января планируется взять кредит в банке на шесть месяцев в размере
— 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — целое число;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
| Дата | 15.01 | 15.02 | 15.03 | 15.04 | 15.05 | 15.06 | 15.07 |
| Долг (в млн рублей) | 1 | 0,6 | 0,4 | 0,3 | 0,2 | 0,1 | 0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
На следующей странице вам будет предложено проверить их самостоятельно.
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй —
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все положительные значения a , при каждом из которых система
имеет единственное решение.
На следующей странице вам будет предложено проверить их самостоятельно.
В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали по крайней мере два учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл был целым числом. После этого, один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
а) Мог ли средний балл в школе № 1 уменьшиться
б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.
На следующей странице вам будет предложено проверить их самостоятельно.