Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 34184532
1.  
i

Павел Ива­но­вич купил аме­ри­кан­ский ав­то­мо­биль, на спи­до­мет­ре ко­то­ро­го ско­рость из­ме­ря­ет­ся в милях в час. Аме­ри­кан­ская миля равна 1609 м. Ка­ко­ва ско­рость ав­то­мо­би­ля в ки­ло­мет­рах в час, если спи­до­метр по­ка­зы­ва­ет 50 миль в час? Ответ округ­ли­те до це­ло­го числа.

2.  
i

На ри­сун­ке точ­ка­ми по­ка­за­на ме­сяч­ная ауди­то­рия по­ис­ко­во­го сайта Ya.ru во все ме­ся­цы с де­каб­ря 2008 года по ок­тябрь 2009 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли  — ко­ли­че­ство че­ло­век, по­се­тив­ших сайт хотя бы раз за дан­ный месяц. Для на­гляд­но­сти точки на ри­сун­ке со­еди­не­ны ли­ни­ей. Опре­де­ли­те по ри­сун­ку наи­мень­шую ме­сяч­ную ауди­то­рию сайта Ya.ru в пе­ри­од с де­каб­ря 2008 года по ап­рель 2009 года.

 

3.  
i

Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты (4; 2), (8; 4), (6; 8), (2; 6).

4.  
i

Ве­ро­ят­ность того, что новый элек­три­че­ский чай­ник про­слу­жит боль­ше года, равна 0,97. Ве­ро­ят­ность того, что он про­слу­жит боль­ше двух лет, равна 0,89. Най­ди­те ве­ро­ят­ность того, что он про­слу­жит мень­ше двух лет, но боль­ше года.

6.  
i

Бо­ко­вые сто­ро­ны рав­но­бед­рен­но­го тре­уголь­ни­ка равны 5, ос­но­ва­ние равно 6. Най­ди­те ра­ди­ус впи­сан­ной окруж­но­сти.

7.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции y  =  f(x). Функ­ция F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в кубе плюс 30x в квад­ра­те плюс 302x минус дробь: чис­ли­тель: 15, зна­ме­на­тель: 8 конец дроби   — одна из пер­во­об­раз­ных функ­ции y  =  f(x). Най­ди­те пло­щадь за­кра­шен­ной фи­гу­ры.

8.  
i

Во сколь­ко раз объем ко­ну­са, опи­сан­но­го около пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­ды, боль­ше объ­е­ма ко­ну­са, впи­сан­но­го в эту пи­ра­ми­ду?

9.  
i

Най­ди­те  дробь: чис­ли­тель: a плюс 9b плюс 16, зна­ме­на­тель: a плюс 3b плюс 8 конец дроби , если  дробь: чис­ли­тель: a, зна­ме­на­тель: b конец дроби =3.

10.  
i

В ро­зет­ку элек­тро­се­ти под­клю­че­ны при­бо­ры, общее со­про­тив­ле­ние ко­то­рых со­став­ля­ет R_1=90 Ом. Па­рал­лель­но с ними в ро­зет­ку пред­по­ла­га­ет­ся под­клю­чить элек­тро­обо­гре­ва­тель. Опре­де­ли­те наи­мень­шее воз­мож­ное со­про­тив­ле­ние R_2 этого элек­тро­обо­гре­ва­те­ля, если из­вест­но, что при па­рал­лель­ном со­еди­не­нии двух про­вод­ни­ков с со­про­тив­ле­ни­я­ми R_1 Ом и R_2 Ом их общее со­про­тив­ле­ние даeтся фор­му­лой R_общ = дробь: чис­ли­тель: R_1 R_2 , зна­ме­на­тель: R_1 плюс R_2 конец дроби левая круг­лая скоб­ка Ом пра­вая круг­лая скоб­ка , а для нор­маль­но­го функ­ци­о­ни­ро­ва­ния элек­тро­се­ти общее со­про­тив­ле­ние в ней долж­но быть не мень­ше 9 Ом. Ответ вы­ра­зи­те в омах.

11.  
i

Два пе­ше­хо­да от­прав­ля­ют­ся од­но­вре­мен­но в одном на­прав­ле­нии из од­но­го и того же места на про­гул­ку по аллее парка. Ско­рость пер­во­го на 1,5 км/⁠ч боль­ше ско­ро­сти вто­ро­го. Через сколь­ко минут рас­сто­я­ние между пе­ше­хо­да­ми ста­нет рав­ным 300 мет­рам?

13.  
i

а)  Ре­ши­те урав­не­ние 1 плюс \ctg 2x= дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­си­нус левая круг­лая скоб­ка \dfrac3 Пи 2 минус 2x пра­вая круг­лая скоб­ка конец дроби .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку  левая квад­рат­ная скоб­ка минус 2 Пи ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

14.  
i

В тре­уголь­ной пи­ра­ми­де ABCD дву­гран­ные углы при рёбрах AD и BC равны. AB  =  BD  =  DC  =  AC  =  5.

а)  До­ка­жи­те, что AD  =  BC.

б)  Най­ди­те объем пи­ра­ми­ды, если дву­гран­ные углы при AD и BC равны 60°.

16.  
i

В вы­пук­лом четырёхуголь­ни­ке ABCD из­вест­ны сто­ро­ны и диа­го­наль: AB  =  3, BC  =  CD  =  5, AD  =  8, AC  =  7.

а)  До­ка­жи­те, что во­круг этого четырёхуголь­ни­ка можно опи­сать окруж­ность.

б)  Най­ди­те BD.

17.  
i

15-⁠го ян­ва­ря пла­ни­ру­ет­ся взять кре­дит в банке на шесть ме­ся­цев в раз­ме­ре 1 млн руб­лей. Усло­вия его воз­вра­та та­ко­вы:

— 1-⁠го числа каж­до­го ме­ся­ца долг уве­ли­чи­ва­ет­ся на r про­цен­тов по срав­не­нию с кон­цом преды­ду­ще­го ме­ся­ца, где r  — целое число;

— со 2-⁠го по 14-⁠е число каж­до­го ме­ся­ца не­об­хо­ди­мо вы­пла­тить часть долга;

— 15-⁠го числа каж­до­го ме­ся­ца долг дол­жен со­став­лять не­ко­то­рую сумму в со­от­вет­ствии со сле­ду­ю­щей таб­ли­цей.

 

Дата15.0115.0215.0315.0415.0515.0615.07
Долг
(в млн руб­лей)
10,60,40,30,20,10

 

Най­ди­те наи­боль­шее зна­че­ние r, при ко­то­ром общая сумма вы­плат будет мень­ше 1,2 млн руб­лей.

18.  
i

Най­ди­те все зна­че­ния a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в квад­ра­те минус 12a левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x плюс a пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 8 левая круг­лая скоб­ка x минус a пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка плюс 35a в квад­ра­те минус 6a минус 9=0

имеет ровно два ре­ше­ния.

19.  
i

а)  Чему равно число спо­со­бов за­пи­сать число 1292 в виде 1292 = a_3 умно­жить на 10 в кубе плюс a_2 умно­жить на 10 в квад­ра­те плюс a_1 умно­жить на 10 плюс a_0, где числа a_i  — целые, 0 мень­ше или равно a_i мень­ше или равно 99, i=0;1;2;3?

б)  Су­ще­ству­ют ли 10 раз­лич­ных чисел N таких, что их можно пред­ста­вить в виде N = a_3 умно­жить на 10 в кубе плюс a_2 умно­жить на 10 в квад­ра­те плюс a_1 умно­жить на 10 плюс a_0, где числа a_i  — целые, 0 мень­ше или равно a_i мень­ше или равно 99, i=0;1;2;3, ровно 130 спо­со­ба­ми?

в)  Сколь­ко су­ще­ству­ет чисел N таких, что их можно пред­ста­вить в виде N = a_3 умно­жить на 10 в кубе плюс a_2 умно­жить на 10 в квад­ра­те плюс a_1 умно­жить на 10 плюс a_0, где числа a_i  — целые, 0 мень­ше или равно a_i мень­ше или равно 99, i=0;1;2;3, ровно 130 спо­со­ба­ми?