Вариант № 10194060

ЕГЭ по математике 2016. Досрочная волна, резервная волна. Вариант А. Ларина (часть С)

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Тип 12 № 513919

а) Решите уравнение  тангенс в кубе x плюс тангенс в квадрате x минус 3 тангенс x минус 3=0.

б) Укажите корни этого уравнения на интервале  левая квадратная скобка 2 Пи ; дробь: числитель: 7 Пи , знаменатель: 2 конец дроби правая квадратная скобка .


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 13 № 513920

В треугольной пирамиде ABCD двугранные углы при рёбрах AD и BC равны. AB = BD = DC = AC = 5.

а) Докажите, что AD = BC.

б) Найдите объем пирамиды, если двугранные углы при AD и BC равны 60°.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 14 № 513921

Решите неравенство  левая круглая скобка 4 в степени левая круглая скобка x в квадрате минус x минус 6 правая круглая скобка минус 1 правая круглая скобка умножить на логарифм по основанию левая круглая скобка 0,25 правая круглая скобка левая круглая скобка 4 в степени левая круглая скобка x в квадрате плюс 2x плюс 2 правая круглая скобка минус 3 правая круглая скобка \leqslant0.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 16 № 513922

Прямая, проходящая через вершину В прямоугольника ABCD, перпендикулярна диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D

а) Докажите, что BM и ВD делят угол В на три равных угла.

б) Найдите расстояние от точки пересечения диагоналей прямоугольника ABCD до прямой СМ, если BC=6 корень из 21.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 15 № 513923

В июле 2016 года планируется взять кредит в размере 4,2 млн. руб. Условия возврата таковы: 

— каждый январь долг возрастает на r% по сравнению с концом предыдущего года. 

— с февраля по июнь необходимо выплатить часть долга.

— в июле 2017, 2018 и 2019 годов долг остается равным 4,2 млн. руб. 

— суммы выплат 2020 и 2021 годов равны.

Найдите r, если в 2021 году долг будет выплачен полностью и общие выплаты составят 6,1  млн. рублей.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 17 № 513924

Найдите все значения параметра a, при каждом из которых система уравнений

 система выражений левая круглая скобка xy в квадрате минус 2xy минус 6y плюс 12 правая круглая скобка корень из 6 минус x=0,y=ax конец системы .

имеет ровно три различных решения.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 18 № 513925

Верно ли, что для любого набора положительных чисел, каждое из которых не превосходит 11, а сумма которых больше 110, всегда можно выбрать несколько чисел так, чтобы их сумма была не больше 110, но больше: 

а) 99;

б) 101;

в) 100.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить тестирование, свериться с ответами, увидеть решения.