а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие промежутку
а) Выполним преобразования:
Из уравнения (1) находим:
Так как решения уравнения (a) не удовлетворяют условию (2), то окончательно получаем
б) Из решений, найденных в пункте а), промежутку принадлежит только одно число:
Ответ: а) б)
Примечание 1.
Для преобразования выражения мы воспользовались приемом, называемым введением вспомогательного угла. Можно было бы использовать известное соотношение
Третий путь — свести уравнение к однородному неполному тригонометрическому уравнению второй степени, используя формулы двойных углов. А именно:
откуда либо либо
Последнее уравнение — однородное тригонометрическое первой степени, оно эквивалентно уравнению
Осталось решить полученные простейшие уравнения и отбросить корни, не лежащие в ОДЗ.
Примечание 2.
Еще один способ решить систему представлен на рисунке. Уравнению (1) соответствуют точки пересечения зеленой пунктирной прямой и единичной окружности. Условие (2) убирает из решения точки, отмеченные красными крестами. Таким образом, решением системы является


Подскажите,как называется раздел тригонометрии,в котором описываются преобразования данного типа : cos(3пи/2 - 2х) =sin2x
это формулы приведения
Подскажите, пожалуйста, как мы перешли к
Для чего мы умножали каждое слагаемое на
Очевидно, именно для того, чтобы совершить это преобразование при помощи формулы косинуса разности.