Задания
Версия для печати и копирования в MS Word
Тип 11 № 509210
i

На ри­сун­ке изоб­ра­же­ны гра­фи­ки функ­ций вида f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =kx плюс b, ко­то­рые пе­ре­се­ка­ют­ся в точке A. Най­ди­те абс­цис­су точки A.

Спрятать решение

Ре­ше­ние.

За­ме­тим, что на ри­сун­ке изоб­ра­же­ны гра­фи­ки ли­ней­ных функ­ций. Найдём их урав­не­ния y  =  kx + b. Пер­вая пря­мая про­хо­дит через точки (−2; 1) и (−1; −3), сле­до­ва­тель­но

 си­сте­ма вы­ра­же­ний 1= минус 2k плюс b, минус 3= минус k плюс b конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний k= минус 4,b= минус 7. конец си­сте­мы .

Зна­чит, урав­не­ние пер­вой пря­мой  — y  =  −4x − 7.

Вто­рая пря­мая про­хо­дит через точки (4; −2) и (5; 1), сле­до­ва­тель­но,

 си­сте­ма вы­ра­же­ний минус 2=4k плюс b,1=5k плюс b конец си­сте­мы . рав­но­силь­но си­сте­ма вы­ра­же­ний k=3,b= минус 14. конец си­сте­мы .

Зна­чит, урав­не­ние вто­рой пря­мой  — y  =  3x − 14.

Те­перь найдём абс­цис­су точки пе­ре­се­че­ния гра­фи­ков:

 минус 4x минус 7 = 3x минус 14 рав­но­силь­но 7x=7 рав­но­силь­но x=1.

Ответ: 1.