Вариант № 11527296

ЕГЭ — 2016. Основная волна по математике 06.06.2016. Вариант 437. Юг

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 514453
i

В лет­нем ла­ге­ре 164 ребёнка и 23 вос­пи­та­те­ля. Ав­то­бус рас­счи­тан не более чем на 45 пас­са­жи­ров. Какое наи­мень­шее ко­ли­че­ство ав­то­бу­сов по­на­до­бит­ся, чтобы за один раз пе­ре­вез­ти всех из ла­ге­ря в город?


Ответ:

2
Тип Д1 № 514454
i

На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха в Сим­фе­ро­по­ле за каж­дый месяц 1988 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли  — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Опре­де­ли­те по при­ведённой диа­грам­ме, сколь­ко ме­ся­цев сред­не­ме­сяч­ная тем­пе­ра­ту­ра пре­вы­ша­ла 20 гра­ду­сов Цель­сия.


Ответ:

3
Тип Д4 № 514455
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1×1 изоб­ра­жен па­рал­ле­ло­грамм. Най­ди­те его пло­щадь.


Ответ:

4
Тип 4 № 514456
i

На­уч­ная кон­фе­рен­ция про­во­дит­ся в 4 дня. Всего за­пла­ни­ро­ва­но 30 до­кла­дов: в пер­вые два дня по 9 до­кла­дов, осталь­ные рас­пре­де­ле­ны по­ров­ну между тре­тьим и четвёртыми днями. На кон­фе­рен­ции пла­ни­ру­ет­ся до­клад про­фес­со­ра М. По­ря­док до­кла­дов опре­де­ля­ет­ся же­ребьёвкой. Ка­ко­ва ве­ро­ят­ность того, что до­клад про­фес­со­ра М. ока­жет­ся за­пла­ни­ро­ван­ным на по­след­ний день кон­фе­рен­ции?


Ответ:

5

Най­ди­те ко­рень урав­не­ния 7 в сте­пе­ни левая круг­лая скоб­ка 6 минус 5x пра­вая круг­лая скоб­ка =49.


Ответ:

6
Тип 1 № 514458
i

От­рез­ки AC и BD  — диа­мет­ры окруж­но­сти с цен­тром O. Угол AOD равен 66°. Най­ди­те впи­сан­ный угол ACB. Ответ дайте в гра­ду­сах.


Ответ:

7
Тип 8 № 514459
i

На ри­сун­ке изоб­ражён гра­фик y = f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­делённой на от­рез­ке (−11; 2). Най­ди­те абс­цис­су точки, в ко­то­рой ка­са­тель­ная к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка па­рал­лель­на оси абс­цисс или сов­па­да­ет с ней.


Ответ:

8

Объём тре­уголь­ной пи­ра­ми­ды равен 94. Через вер­ши­ну пи­ра­ми­ды и сред­нюю линию её ос­но­ва­ния про­ве­де­на плос­кость (см. рис.). Най­ди­те объём отсечённой тре­уголь­ной пи­ра­ми­ды.


Ответ:

9

10
Тип 9 № 514462
i

Для на­гре­ва­тель­но­го эле­мен­та не­ко­то­ро­го при­бо­ра экс­пе­ри­мен­таль­но была по­лу­че­на за­ви­си­мость тем­пе­ра­ту­ры (в кель­ви­нах) от вре­ме­ни ра­бо­ты:T левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка =T_0 плюс bt плюс at в квад­ра­те ,где t  — время (в мин.), T0  =  680 К, а  =  −16 К/мин2, b  =  224 К/мин. Из­вест­но, что при тем­пе­ра­ту­ре на­гре­ва­тель­но­го эле­мен­та свыше 1400 К при­бор может ис­пор­тить­ся, по­это­му его нужно от­клю­чить. Най­ди­те, через какое наи­боль­шее время после на­ча­ла ра­бо­ты нужно от­клю­чить при­бор. Ответ дайте в ми­ну­тах.


Ответ:

11
Тип 10 № 514463
i

Име­ет­ся два спла­ва. Пер­вый сплав со­дер­жит 5% меди, вто­рой  — 14% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 10 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 12% меди. Най­ди­те массу тре­тье­го спла­ва. Ответ дайте в ки­ло­грам­мах.


Ответ:

12

13
Тип 13 № 514472
i

а)  Ре­ши­те урав­не­ние 2 ко­си­нус в квад­ра­те x плюс 1=2 ко­рень из 2 ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби минус x пра­вая круг­лая скоб­ка .

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­ще­го от­рез­ку  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби ;3 Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 514480
i

В пра­виль­ной четырёхуголь­ной пи­ра­ми­де SABCD сто­ро­на AB ос­но­ва­ния равна 16, а вы­со­та пи­ра­ми­ды равна 4. На рёбрах AB, CD и AS от­ме­че­ны точки M, N и K со­от­вет­ствен­но, причём AM  =  DN  =  4 и AK  =  3.

а)  До­ка­жи­те, что плос­ко­сти MNK и SBC па­рал­лель­ны.

б)  Най­ди­те рас­сто­я­ние от точки M до плос­ко­сти SBC.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 514482
i

В тра­пе­ции ABCD точка E  — се­ре­ди­на ос­но­ва­ния AD, точка M  — се­ре­ди­на бо­ко­вой сто­ро­ны AB. От­рез­ки CE и DM пе­ре­се­ка­ют­ся в точке O.

а)  До­ка­жи­те, что пло­ща­ди четырёхуголь­ни­ка AMOE и тре­уголь­ни­ка COD равны.

б)  Най­ди­те, какую часть от пло­ща­ди тра­пе­ции со­став­ля­ет пло­щадь четырёхуголь­ни­ка AMOE, если BC  =  3, AD  =  4.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17

В июле 2016 года пла­ни­ру­ет­ся взять кре­дит в банке на че­ты­ре года в раз­ме­ре S млн руб­лей, где S  — целое число. Усло­вия его воз­вра­та та­ко­вы:

  — каж­дый ян­варь долг уве­ли­чи­ва­ет­ся на 15% по срав­не­нию с кон­цом преды­ду­ще­го года;

  — с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить часть долга;

  — в июле каж­до­го года долг дол­жен со­став­лять часть кре­ди­та в со­от­вет­ствии со сле­ду­ю­щей таб­ли­цей.

 

Месяц и годИюль 2016Июль 2017Июль 2018Июль 2019Июль 2020
Долг (в млн руб­лей)S0,8S0,5S0,1S0

 

Най­ди­те наи­боль­шее зна­че­ние S, при ко­то­ром общая сумма вы­плат будет мень­ше 50 млн руб­лей.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 514484
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

 дробь: чис­ли­тель: x минус 2a, зна­ме­на­тель: x плюс 2 конец дроби плюс дробь: чис­ли­тель: x минус 1, зна­ме­на­тель: x минус a конец дроби =1

имеет ровно один ко­рень.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 514485
i

На доске на­пи­са­но 10 не­от­ри­ца­тель­ных чисел. За один ход сти­ра­ют­ся два числа, а вме­сто них за­пи­сы­ва­ет­ся сумма, округлённая до це­ло­го числа (на­при­мер, вме­сто 5,5 и 3 за­пи­сы­ва­ет­ся 9, а вме­сто 3,3 и 5 за­пи­сы­ва­ет­ся 8).

а)  При­ве­ди­те при­мер 10 не­це­лых чисел и по­сле­до­ва­тель­но­сти 9 ходов, после ко­то­рых на доске будет за­пи­са­но число, рав­ное сумме ис­ход­ных чисел.

б)  Может ли после 9 ходов на доске быть на­пи­са­но число, от­ли­ча­ю­ще­е­ся от суммы ис­ход­ных чисел на 7?

в)  На какое наи­боль­шее число могут от­ли­чать­ся числа, за­пи­сан­ные на доске после 9 ходов, вы­пол­нен­ных с одним и тем же на­бо­ром ис­ход­ных чисел в раз­лич­ном по­ряд­ке?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.