Система навигации самолёта информирует пассажира о том, что полёт проходит на высоте 35 000 футов. Выразите высоту полёта в метрах. Считайте, что 1 фут равен 30,5 см.
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
Система навигации самолёта информирует пассажира о том, что полёт проходит на высоте 35 000 футов. Выразите высоту полёта в метрах. Считайте, что 1 фут равен 30,5 см.
При работе фонарика батарейка постепенно разряжается и напряжение в электрической цепи фонарика падает. На графике показана зависимость напряжения в цепи от времени работы фонарика. На горизонтальной оси отмечено время работы фонарика в часах, на вертикальной оси — напряжение в вольтах. Определите по рисунку, за сколько часов напряжение упадёт с 1,4 вольта до 1 вольта.
На клетчатой бумаге с размером клетки 1×1 изображён треугольник ABC. Найдите длину его высоты, опущенной на сторону AB.
Вероятность того, что новый сканер прослужит больше года, равна 0,94. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Найдите корень уравнения
Стороны параллелограмма равны 9 и 15. Высота, опущенная на первую сторону, равна 10. Найдите высоту, опущенную на вторую сторону параллелограмма.
На рисунке изображён график — производной функции
На оси абсцисс отмечено девять точек:
Сколько из этих точек принадлежит промежуткам убывания функции
Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 47. Найдите объём шара.
Найдите значение выражения
Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением Скорость
(в км/ч)
где l — пройденный автомобилем путь (в км). Найдите, сколько километров проедет автомобиль к моменту, когда он разгонится до скорости 90 км/ч.
Первая труба наполняет резервуар на 48 минут дольше, чем вторая. Обе трубы, работая одновременно, наполняют этот же резервуар за 45 минут. За сколько минут наполняет этот резервуар одна вторая труба?
Найдите точку минимума функции принадлежащую промежутку
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Дана правильная треугольная призма АВСА1В1С1, все рёбра которой равны 6. Через точки A, С1 и середину T ребра А1В1 проведена плоскость.
а) Докажите, что сечение призмы указанной плоскостью является прямоугольным треугольником.
б) Найдите угол между плоскостью сечения и плоскостью ABC.
Решите неравенство
Стороны KN и LM трапеции KLMN параллельны, прямые LM и MN — касательные к окружности, описанной около треугольника KLN.
а) Докажите, что треугольники LMN и KLN подобны.
б) Найдите площадь треугольника KLN, если известно, что KN = 6, а ∠LMN = 120°.
По бизнес-плану предполагается изначально вложить в четырёхлетний проект 20 млн рублей. По итогам каждого года планируется прирост вложенных средств на 13% по сравнению с началом года. Начисленные проценты остаются вложенными в проект. Кроме этого, сразу после начислений процентов нужны дополнительные вложения: по целому числу n млн рублей в первый и второй годы, а также по целому числу m млн рублей в третий и четвёртый годы.
Найдите наименьшие значения n и m, при которых первоначальные вложения за два года как минимум удвоятся, а за четыре года как минимум утроятся.
Найдите все значения параметра b, при каждом из которых уравнение
имеет единственное решение на отрезке [−2; 2].
Бесконечная арифметическая прогрессия a1, a2, ..., an, ... состоит из различных натуральных чисел.
а) Существует ли такая прогрессия, в которой среди чисел a1, a2, ..., a7 ровно три числа делятся на 36?
б) Существует ли такая прогрессия, в которой среди чисел a1, a2, ..., a30 ровно 9 чисел делятся на 36?
в) Для какого наибольшего натурального n могло оказаться так, что среди чисел a1, a2, ..., a2n больше кратных 36, чем среди чисел a2n + 1, a2n + 2, ..., a5n?