Вероятность того, что новый сканер прослужит больше года, равна 0,94. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Пусть A = «сканер прослужит больше года, но меньше двух лет», В = «сканер прослужит больше двух лет», С = «сканер прослужит ровно два года», тогда A + B + С = «сканер прослужит больше года».
События A, В и С несовместные, вероятность их суммы равна сумме вероятностей этих событий. Вероятность события С, состоящего в том, что сканер выйдет из строя ровно через два года — строго в тот же день, час и секунду — равна нулю. Тогда:
P(A + B + С) = P(A) + P(B) + P(С)= P(A) + P(B),
откуда, используя данные из условия, получаем
0,94 = P(A) + 0,87.
Тем самым, для искомой вероятности имеем:
P(A) = 0,94 − 0,87 = 0,07.
Ответ: 0,07.
Аналоги к заданию № 320176: 509569 320641 514177 549305 320643 320645 320647 320649 320651 320653 ... Все