Заголовок: ЕГЭ по математике 06.06.2016. Основная волна. Вариант 605 (часть 2)
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 11595368

ЕГЭ по математике 06.06.2016. Основная волна. Вариант 605 (часть 2)

1.  
i

а)  Ре­ши­те урав­не­ние  синус 2x плюс 2 ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 3 Пи ; минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

2.  
i

На рёбрах CD и BB1 куба ABCDA1B1C1D1 с реб­ром 12 от­ме­че­ны точки Р и Q со­от­вет­ствен­но, причём DP  =  4, а B1Q  =  3. Плос­кость APQ пе­ре­се­ка­ет ребро CC1 в точке М.

а)  До­ка­жи­те, что точка М яв­ля­ет­ся се­ре­ди­ной ребра CC1.

б)  Най­ди­те рас­сто­я­ние от точки С до плос­ко­сти APQ.

3.  
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: 9 в сте­пе­ни x минус 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 19, зна­ме­на­тель: 3 в сте­пе­ни x минус 6 конец дроби плюс дробь: чис­ли­тель: 9 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка плюс 2, зна­ме­на­тель: 3 в сте­пе­ни x минус 9 конец дроби мень­ше или равно 10 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 3.

4.  
i

В пря­мо­уголь­ном тре­уголь­ни­ке АВС с пря­мым углом С точки М и N  — се­ре­ди­ны ка­те­тов АС и ВС со­от­вет­ствен­но, СН  — вы­со­та.

а)  До­ка­жи­те, что пря­мые МН и NH пер­пен­ди­ку­ляр­ны.

б)  Пусть Р  — точка пе­ре­се­че­ния пря­мых АС и NH, а Q  — точка пе­ре­се­че­ния пря­мых BC и МН. Най­ди­те пло­щадь тре­уголь­ни­ка PQM, если АН  =  4 и ВН  =  2.

5.  
i

Вклад в раз­ме­ре 10 млн руб. пла­ни­ру­ет­ся от­крыть на че­ты­ре года. В конце каж­до­го года банк уве­ли­чи­ва­ет раз­мер вкла­да на 10%. Кроме того в на­ча­ле тре­тье­го и четвёртого годов вклад­чик еже­год­но по­пол­ня­ет вклад на x млн руб., где x  — целое число. Най­ди­те наи­мень­шее зна­че­ние x, при ко­то­ром банк за че­ты­ре года на­чис­лит на вклад боль­ше 7 млн руб.

6.  
i

Най­ди­те все зна­че­ния а, при каж­дом из ко­то­рых си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка y плюс 3x минус 9 пра­вая круг­лая скоб­ка = |x минус 3| в кубе ,y=x плюс a конец си­сте­мы .

имеет ровно че­ты­ре раз­лич­ных ре­ше­ния.

7.  
i

На доске на­пи­са­но 24 числа: во­семь «5», во­семь «4» и во­семь «3». Эти числа раз­би­ва­ют на две груп­пы, в каж­дой из ко­то­рых есть хотя бы одно число. Сред­нее ариф­ме­ти­че­ское чисел в пер­вой груп­пе равно А, сред­нее ариф­ме­ти­че­ское чисел во вто­рой груп­пе равно В. (Для груп­пы из един­ствен­но­го числа сред­нее ариф­ме­ти­че­ское равно этому числу.)

а)  При­ве­ди­те при­мер раз­би­е­ния ис­ход­ных чисел на две груп­пы, при ко­то­ром сред­нее ариф­ме­ти­че­ское всех чисел мень­ше  дробь: чис­ли­тель: A плюс B, зна­ме­на­тель: 2 конец дроби .

б)  До­ка­жи­те, что если раз­бить ис­ход­ные числа на две груп­пы по 12 чисел, то сред­нее ариф­ме­ти­че­ское всех чисел будет равно  дробь: чис­ли­тель: A плюс B, зна­ме­на­тель: 2 конец дроби .

в)  Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: A плюс B, зна­ме­на­тель: 2 конец дроби .