Каталог заданий.
Прямоугольный параллелепипед
Версия для печати и копирования в MS Word
1
Тип 3 № 27054
i

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 3 и 4. Пло­щадь по­верх­но­сти этого па­рал­ле­ле­пи­пе­да равна 94. Най­ди­те тре­тье ребро, вы­хо­дя­щее из той же вер­ши­ны.


Ответ:

2
Тип 3 № 27060
i

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2. Пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да равна 16. Най­ди­те его диа­го­наль.


Ответ:

3
Тип 3 № 27076
i

Пло­щадь грани пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равна 12. Ребро, пер­пен­ди­ку­ляр­ное этой грани, равно 4. Най­ди­те объем па­рал­ле­ле­пи­пе­да.


Ответ:

4
Тип 3 № 27077
i

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен 24. Одно из его ребер равно 3. Най­ди­те пло­щадь грани па­рал­ле­ле­пи­пе­да, пер­пен­ди­ку­ляр­ной этому ребру.


Ответ:

5
Тип 3 № 27078
i

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да равен 60. Пло­щадь одной его грани равна 12. Най­ди­те ребро па­рал­ле­ле­пи­пе­да, пер­пен­ди­ку­ляр­ное этой грани.


Ответ:

6

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2 и 6. Объем па­рал­ле­ле­пи­пе­да равен 48. Най­ди­те тре­тье ребро па­рал­ле­ле­пи­пе­да, вы­хо­дя­щее из той же вер­ши­ны.


Ответ:

7
Тип 3 № 27080
i

Три ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 4, 6, 9. Най­ди­те ребро рав­но­ве­ли­ко­го ему куба.


Ответ:

8
Тип 3 № 27100
i

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те объем па­рал­ле­ле­пи­пе­да.


Ответ:

9
Тип 3 № 27101
i

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 3. Объем па­рал­ле­ле­пи­пе­да равен 36. Най­ди­те его диа­го­наль.


Ответ:

10
Тип 3 № 27103
i

Одна из гра­ней пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да  — квад­рат. Диа­го­наль па­рал­ле­ле­пи­пе­да равна  ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та и об­ра­зу­ет с плос­ко­стью этой грани угол 45°. Най­ди­те объем па­рал­ле­ле­пи­пе­да.


Ответ:

11
Тип 3 № 27128
i

Ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1, 2, 3. Най­ди­те его пло­щадь по­верх­но­сти.


Ответ:

12
Тип 3 № 27143
i

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 2, 4. Диа­го­наль па­рал­ле­ле­пи­пе­да равна 6. Най­ди­те пло­щадь по­верх­но­сти па­рал­ле­ле­пи­пе­да.


Ответ:

13
Тип 3 № 27146
i

Два ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, вы­хо­дя­щие из одной вер­ши­ны, равны 1 и 2. Объем па­рал­ле­ле­пи­пе­да равен 6. Най­ди­те пло­щадь его по­верх­но­сти.


Ответ:

14
Тип 3 № 27209
i

Объем па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1 равен 4,5. Най­ди­те объем тре­уголь­ной пи­ра­ми­ды AD_1CB_1.


Ответ:

15
Тип 3 № 245335
i

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, D, A1, B, C, B1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1, у ко­то­ро­го AB = 3, AD = 4, AA_1 = 5.


Ответ:

16

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, B, C, D_1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1, у ко­то­ро­го AB = 4, AD = 3, AA_1 = 4.


Ответ:

17
Тип 3 № 245337
i

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A_1, B, C, C_1, B_1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1, у ко­то­ро­го AB = 4, AD = 3, AA_1 = 4.


Ответ:

18
Тип 3 № 245338
i

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, B, C, B1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1, у ко­то­ро­го AB = 3, AD = 3, AA_1 = 4.


Ответ:

19
Тип 3 № 245339
i

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, B, B_1, C_1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA_1B_1C_1D_1, у ко­то­ро­го AB = 5, AD = 3, AA_1 = 4.


Ответ:

20
Тип 3 № 245359
i

Най­ди­те квад­рат рас­сто­я­ния между вер­ши­на­ми C и A1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, для ко­то­ро­го AB  =  5, AD  =  4, AA1=3.


Ответ:

21
Тип 3 № 245360
i

Най­ди­те рас­сто­я­ние между вер­ши­на­ми А и D_1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, для ко­то­ро­го AB = 5, AD = 4, AA_1 = 3.


Ответ:

22
Тип 3 № 245361
i

Най­ди­те угол ABD_1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, для ко­то­ро­го AB=5, AD=4, AA_1=3. Дайте ответ в гра­ду­сах.


Ответ:

23
Тип 3 № 245363
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA_1B_1C_1D_1из­вест­но, что AB  =  4, AD  =  3, AA_1  =  5. Най­ди­те угол DBD1. Ответ дайте в гра­ду­сах.


Ответ:

24
Тип 3 № 284357
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA_1B_1C_1D_1 из­вест­но, что BD_1=3, CD=2, AD=2. Най­ди­те длину ребра AA_1.


Ответ:

25
Тип 3 № 284363
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA_1B_1C_1D_1 из­вест­но, что DD_1=1, CD=2, AD=2. Най­ди­те длину диа­го­на­ли CA_1.


Ответ:

26
Тип 3 № 315131
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA_1B_1C_1D_1 ребро AB=2, ребро AD= ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та , ребро AA_1=2. Точка K  — се­ре­ди­на ребра BB_1. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через точки A_1,D_1 и K.


Ответ:

27
Тип 3 № 316552
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA_1B_1C_1D_1 из­вест­ны длины рёбер: AB=24, AD=10, AA_1=22. Най­ди­те пло­щадь се­че­ния, про­хо­дя­ще­го через вер­ши­ны A, A_1 и C.


Ответ:

28

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA_1B_1C_1D_1 из­вест­ны длины рёбер AB=8, AD=6, AA_1=21. Най­ди­те синус угла между пря­мы­ми CD и A_1C_1.


Ответ:

29
Тип 3 № 324452
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA_1B_1C_1D_1 из­вест­ны длины рёбер: AB  =  3, AD  =  5, AA_1  =  12. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да плос­ко­стью, про­хо­дя­щей через точки A, B и C1.


Ответ:

30

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся вер­ши­ны A, B, C, D, B1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA1B1C1D1, у ко­то­ро­го AB  =  9, BC  =  3, BB1  =  8.


Ответ:

31

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся вер­ши­ны A, B, C, D, B1 пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA1B1C1D1, у ко­то­ро­го AB  =  3, BC  =  7, BB1  =  5.


Ответ:

32

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA1B1C1D1 из­вест­но, что AB  =  9, BC  =  6, AA1  =  5. Най­ди­те объём мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, B, C, A1, B1, C1.


Ответ:

33

Три ребра пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да, ис­хо­дя­щие из одной вер­ши­ны, равны 5, 6, 8. Най­ди­те объем па­рал­ле­ле­пи­пе­да, ребра ко­то­ро­го равны по­ло­ви­нам ребер дан­но­го па­рал­ле­ле­пи­пе­да.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.