СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Cайты, меню, вход, новости


Вариант № 34184546

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
1
Задание 1 № 77343

Тетрадь стоит 24 рубля. Сколько рублей заплатит покупатель за 60 тетрадей, если при покупке больше 50 тетрадей магазин делает скидку 10% от стоимости всей покупки?


Ответ:

2
Задание 2 № 504423

На диаграмме показан средний балл участников из 10 стран в тестировании учащихся 8-го класса по математике в 2007 году (по 1000-балльной шкале). Среди указанных стран второе место принадлежит США. Определите, какое место занимает Швеция.

 


Ответ:

3
Задание 3 № 501183

Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1 см х 1 см (см. рисунок). Ответ дайте в квадратных сантиметрах.


Ответ:

4
Задание 4 № 1024

На тарелке 16 пирожков: 7 с рыбой, 5 с вареньем и 4 с вишней. Юля наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.


Ответ:

5
Задание 5 № 77374

Решите уравнение


Ответ:

6
Задание 6 № 27765

Острый угол прямоугольного треугольника равен 32°. Найдите острый угол, образованный биссектрисами этого и прямого углов треугольника. Ответ дайте в градусах.


Ответ:

7
Задание 7 № 119972

Прямая y = 3x + 1 является касательной к графику функции ax2 + 2x + 3. Найдите a.


Ответ:

8
Задание 8 № 510068

Через среднюю линию основания треугольной призмы, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности призмы, если площадь боковой поверхности отсеченной треугольной призмы равна 37.


Ответ:

9
Задание 9 № 26805

Найдите , если


Ответ:

10
Задание 10 № 27978

Опорные башмаки шагающего экскаватора, имеющего массу тонн, представляют собой две пустотелые балки длиной метров и шириной метров каждая. Давление экскаватора на почву, выражаемое в килопаскалях, определяется формулой , где – масса экскаватора (в тоннах), – длина балок в метрах, – ширина балок в метрах, – ускорение свободного падения (считайте м/с). Определите наименьшую возможную ширину опорных балок, если известно, что давление не должно превышать 140 кПа. Ответ выразите в метрах.


Ответ:

11
Задание 11 № 99565

В 2008 году в городском квартале проживало человек. В 2009 году, в результате строительства новых домов, число жителей выросло на , а в 2010 году на по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?


Ответ:

12
Задание 12 № 77475

Найдите наименьшее значение функции на отрезке


Ответ:

13
Задание 13 № 514241

а) Решите уравнение

б) Укажите корни этого уравнения, принадлежащего отрезку


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Задание 14 № 516780

В параллелепипеде ABCDA1B1C1D1 точка F середина ребра AB, а точка E делит ребро DD1 в отношении DE : ED1 = 6 : 1. Через точки F и E проведена плоскость α, параллельная прямой AC и пересекающая диагональ B1D в точке О.

а) Докажите, что плоскость α делит диагональ DB1 в отношении DO : OB1 = 2 : 3.

б) Найдите угол между плоскостью α и плоскостью (ABC), если дополнительно известно, что ABCDA1B1C1D1 — правильная четырехугольная призма, сторона основания которой равна 4, а высота равна 7.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Задание 15 № 507612

Решите неравенство


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Задание 16 № 517183

Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D.

а) Докажите, что ∠ABM = ∠DBC = 30°.

б) Найдите расстояние от центра прямоугольника до прямой CM, если BC = 9.


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Задание 17 № 506952

Фермер получил кредит в банке под определенный процент годовых. Через год фермер в счет погашения кредита вернул в банк от всей суммы, которую он должен банку к этому времени, а еще через год в счет полного погашения кредита он внес в банк сумму, на 21% превышающую величину полученного кредита. Каков процент годовых по кредиту в данном банке?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Задание 18 № 517267

Найдите все значения параметра a, при каждом из которых система неравенств

имеет хотя бы одно решение на отрезке [−1; 0].


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Задание 19 № 513689

После того, как учитель доказал классу новую теорему, выяснилось, что большая часть класса не поняла доказательство (быть может, все — Решу ЕГЭ). На перемене один ученик вдруг понял доказательство (и только он). Также известно, что в классе учится не более 30, но не менее 20 человек.

а) Могло ли получиться так, что теперь уже меньшая часть класса не понимает доказательство?

б) Могло ли получиться так, что исходно процент учеников, понявших доказательство, выражался целым числом, а после перемены ― нецелым числом?

в) Какое наибольшее целое значение может принять процент учеников класса, так и не понявших доказательство этой теоремы?


Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.
Времени прошло:0:00:00
Времени осталось:3.9166666666666665:55:00
Завершить тестирование, свериться с ответами, увидеть решения.