ЕГЭ по математике 14.04.2017. Досрочная волна, резервный день. Вариант А. Ларина (часть 2)
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
Длина диагонали куба ABCDA1B1C1D1 равна 3. На луче A1C отмечена точка P так, что A1P = 4.
а) Докажите, что PBDC1 — правильный тетраэдр.
б) Найдите длину отрезка AP.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите неравенство:
На следующей странице вам будет предложено проверить их самостоятельно.
Точка M — середина гипотенузы AB прямоугольного треугольника ABC. Серединный перпендикуляр к гипотенузе пересекает катет BC в точке N.
а) Докажите, что ∠CAN = ∠CMN.
б) Найдите отношение радиусов окружностей, описанных около треугольников ANB и CBM, если
На следующей странице вам будет предложено проверить их самостоятельно.
В июле 2026 года планируется взять кредит в банке на три года в размере S млн рублей, где S — целое число. Условия его возврата таковы:
− каждый январь долг увеличивается на 20% по сравнению с концом предыдущего года;
− с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
− в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей:
| Месяц и год | Июль 2026 | Июль 2027 | Июль 2028 | Июль 2029 |
|---|---|---|---|---|
| Долг (в млн рублей) | S | 0,8S | 0,4S | 0 |
Найдите наибольшее значение S, при котором каждая из выплат будет меньше 5 млн рублей.
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения параметра a, при каждом из которых система неравенств
имеет хотя бы одно решение на отрезке [−1; 0].
На следующей странице вам будет предложено проверить их самостоятельно.
На доске написано несколько (более одного) различных натуральных чисел, причем любые два из них отличаются не более чем в три раза.
а) Может ли на доске быть 5 чисел, сумма которых равна 47?
б) Может ли на доске быть 10 чисел, сумма которых равна 94?
в) Сколько может быть чисел на доске, если их произведение равно 8000?
На следующей странице вам будет предложено проверить их самостоятельно.