Вариант № 13774613

Пробный ЕГЭ Санкт-Петербург, 11.04.2017. Вариант 2. (Часть 2)

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1

а)  Ре­ши­те урав­не­ние: 9 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка плюс 14=0.

б)  Опре­де­ли­те, какие из его кор­ней при­над­ле­жат от­рез­ку  левая квад­рат­ная скоб­ка 1; ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 14 № 516780
i

В па­рал­ле­ле­пи­пе­де ABCDA1B1C1D1 точка F се­ре­ди­на ребра AB, а точка E делит ребро DD1 в от­но­ше­нии DE : ED1  =  6 : 1. Через точки F и E про­ве­де­на плос­кость α, па­рал­лель­ная пря­мой AC и пе­ре­се­ка­ю­щая диа­го­наль B1D в точке О.

а)  До­ка­жи­те, что плос­кость α делит диа­го­наль DB1 в от­но­ше­нии DO : OB1  =  2 : 3.

б)  Най­ди­те угол между плос­ко­стью α и плос­ко­стью (ABC), если до­пол­ни­тель­но из­вест­но, что ABCDA1B1C1D1  — пра­виль­ная че­ты­рех­уголь­ная приз­ма, сто­ро­на ос­но­ва­ния ко­то­рой равна 4, а вы­со­та равна 7.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3

Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 17 № 516782
i

Окруж­ность про­хо­дит через вер­ши­ны A и B па­рал­ле­ло­грам­ма ABCD, пе­ре­се­ка­ет сто­ро­ны AD и BC в точ­ках M и N со­от­вет­ствен­но и ка­са­ет­ся сто­ро­ны CD.

а)  До­ка­жи­те, что точки C, D, M и N лежат на одной окруж­но­сти.

б)  Най­ди­те длину от­рез­ка AD, зная, что BM = a, MD = b, NC = c.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 16 № 516783
i

Ге­ор­гий взял кре­дит в банке на сумму 804 000 руб­лей. Схема вы­пла­та кре­ди­та та­ко­ва: в конце каж­до­го года банк уве­ли­чи­ва­ет на 10 про­цен­тов остав­шу­ю­ся сумму долга, а затем Ге­ор­гий пе­ре­во­дит в банк свой оче­ред­ной пла­теж. Из­вест­но, что Ге­ор­гий по­га­сил кре­дит за три года, при­чем каж­дый его сле­ду­ю­щий пла­теж был ровно вдвое мень­ше преды­ду­ще­го. Какую сумму Ге­ор­гий за­пла­тил в тре­тий раз? Ответ дайте в руб­лях.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 18 № 516784
i

Най­ди­те все такие зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: ко­си­нус x минус a синус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: a ко­си­нус x минус синус x конец ар­гу­мен­та имеет ре­ше­ния на от­рез­ке  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 516785
i

Дано квад­рат­ное урав­не­ние ax в квад­ра­те минус bx плюс c=0, где a, b, c  — на­ту­раль­ные числа, не пре­вос­хо­дя­щие 200. Также из­вест­но, что числа a, b и c по­пар­но от­ли­ча­ют­ся друг от друга не менее, чем на 2.

а)  Может ли такое урав­не­ние иметь ко­рень 9?

б)  Может ли такое урав­не­ние иметь ко­рень 135?

в)  Какой наи­боль­ший целый ко­рень может иметь такое урав­не­ние?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.