Вариант № 7340125

ЕГЭ по математике 26.03.2015. Досрочная волна, Восток.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 510057
i

Бегун про­бе­жал 180 мет­ров за 20 се­кунд. Най­ди­те сред­нюю ско­рость бе­гу­на. Ответ дайте в ки­ло­мет­рах в час.


Ответ:

2
Тип Д1 № 510058
i

На ри­сун­ке жир­ны­ми точ­ка­ми по­ка­за­но су­точ­ное ко­ли­че­ство осад­ков, вы­па­дав­ших в Ка­за­ни с 3 по 15 фев­ра­ля 1909 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся числа ме­ся­ца, по вер­ти­ка­ли  — ко­ли­че­ство осад­ков, вы­пав­ших в со­от­вет­ству­ю­щий день, в мил­ли­мет­рах. Для на­гляд­но­сти жир­ные точки на ри­сун­ке со­еди­не­ны ли­ни­ей. Опре­де­ли­те по ри­сун­ку, ка­ко­го числа впер­вые вы­па­ло 5 мил­ли­мет­ров осад­ков.

 


Ответ:

3
Тип Д3 № 510059
i

Те­ле­фон­ная ком­па­ния предо­став­ля­ет на выбор три та­риф­ных плана.

 

Та­риф­ный планАбо­нент­ская плата

(в месяц)

Плата за 1 ми­ну­ту раз­го­во­ра
По­вре­мен­ныйНет0,3 руб.
Ком­би­ни­ро­ван­ный160 руб. за 420 минут0,2 руб. (сверх 420 минут)
Без­ли­мит­ный255 руб.нет

 

Або­нент  пред­по­ла­га­ет,  что  общая  дли­тель­ность  раз­го­во­ров  со­ста­вит 700 минут в месяц, и ис­хо­дя из этого вы­би­ра­ет наи­бо­лее дешёвый та­риф­ный план. Сколь­ко руб­лей дол­жен  будет  за­пла­тить  або­нент  за  месяц,  если  общая  дли­тель­ность  раз­го­во­ров дей­стви­тель­но будет равна 700 ми­ну­там?


Ответ:

4
Тип Д4 № 510060
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1х1 изоб­ра­жен угол. Най­ди­те синус этого угла


Ответ:

5
Тип 5 № 510061
i

Если шах­ма­тист А. иг­ра­ет бе­лы­ми фи­гу­ра­ми, то он вы­иг­ры­ва­ет у шах­ма­ти­ста Б. с ве­ро­ят­но­стью 0,5. Если А. иг­ра­ет чер­ны­ми, то А. вы­иг­ры­ва­ет у Б. с ве­ро­ят­но­стью 0,3. Шах­ма­ти­сты А. и Б. иг­ра­ют две пар­тии, причём во вто­рой пар­тии ме­ня­ют цвет фигур. Най­ди­те ве­ро­ят­ность того, что А. вы­иг­ра­ет оба раза.


Ответ:

6
Тип 6 № 510062
i

Най­ди­те ко­рень урав­не­ния 36 в сте­пе­ни левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби .


Ответ:

7
Тип 1 № 510063
i

Пе­ри­метр пря­мо­уголь­ной тра­пе­ции, опи­сан­ной около окруж­но­сти, равен 32, её боль­шая бо­ко­вая сто­ро­на равна 9. Най­ди­те ра­ди­ус окруж­но­сти.


Ответ:

8

На ри­сун­ке изоб­ражён гра­фик функ­ции и шесть точек на оси абс­цисс. В сколь­ких из этих точек про­из­вод­ная функ­ции от­ри­ца­тель­на?


Ответ:

9

В пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 3, бо­ко­вое ребро равно 5. Най­ди­те ее объем.


Ответ:

10
Тип 7 № 510066
i

Вы­чис­ли­те:  дробь: чис­ли­тель: ко­рень 28 сте­пе­ни из 3 умно­жить на 3 умно­жить на ко­рень 21 сте­пе­ни из 3 , зна­ме­на­тель: ко­рень 12 сте­пе­ни из 3 конец дроби .


Ответ:

11
Тип 9 № 510067
i

Во­до­лаз­ный ко­ло­кол, со­дер­жа­щий υ = 2 моля воз­ду­ха при дав­ле­нии p1 = 1,75 ат­мо­сфе­ры, мед­лен­но опус­ка­ют на дно водоёма. При этом про­ис­хо­дит изо­тер­ми­че­ское сжа­тие воз­ду­ха до ко­неч­но­го дав­ле­ния p2. Ра­бо­та, со­вер­ша­е­мая водой при сжа­тии воз­ду­ха, опре­де­ля­ет­ся вы­ра­же­ни­ем A= альфа v T ло­га­рифм по ос­но­ва­нию 2 дробь: чис­ли­тель: p_2, зна­ме­на­тель: p_1 конец дроби , где  альфа =13,3 дробь: чис­ли­тель: Дж, зна­ме­на­тель: моль умно­жить на К конец дроби   — по­сто­ян­ная, T  =  300 K  — тем­пе­ра­ту­ра воз­ду­ха. Най­ди­те, какое дав­ле­ние (в атм) будет иметь воз­дух в ко­ло­ко­ле, если при сжа­тии воз­ду­ха была со­вер­ше­на ра­бо­та в 15 960 Дж.


Ответ:

12

Через сред­нюю линию ос­но­ва­ния тре­уголь­ной приз­мы, про­ве­де­на плос­кость, па­рал­лель­ная бо­ко­во­му ребру. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти приз­мы, если пло­щадь бо­ко­вой по­верх­но­сти от­се­чен­ной тре­уголь­ной приз­мы равна 37.


Ответ:

13
Тип 10 № 510069
i

Сме­шав 43‐про­цент­ный и 89‐про­цент­ный рас­тво­ры кис­ло­ты и до­ба­вив 10 кг чи­стой воды, по­лу­чи­ли 69‐про­цент­ный рас­твор кис­ло­ты. Если бы вме­сто 10 кг воды до­ба­ви­ли 10 кг 50‐про­цент­но­го рас­тво­ра той же кис­ло­ты, то по­лу­чи­ли бы 73‐про­цент­ный рас­твор кис­ло­ты. Сколь­ко ки­ло­грам­мов 43‐про­цент­но­го рас­тво­ра ис­поль­зо­ва­ли для по­лу­че­ния смеси?


Ответ:

14
Тип 12 № 510070
i

Най­ди­те наи­боль­шее зна­че­ние функ­ции y=33x минус 30 синус x плюс 29 на от­рез­ке  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: зна­ме­на­тель: p конец дроби i2; 0 пра­вая квад­рат­ная скоб­ка .


Ответ:

15
Тип 13 № 510071
i

а)  Ре­ши­те урав­не­ние 2 ко­си­нус в кубе x минус ко­си­нус в квад­ра­те x плюс 2 ко­си­нус x минус 1 = 0.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 2 Пи ;~ дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16

В кубе ABCDA1B1C1D1 все рёбра равны 4. На его ребре BB1 от­ме­че­на точка K так, что KB = 3. Через точки K и C1 по­стро­е­на плос­кость α, па­рал­лель­ная пря­мой BD1.

а)  До­ка­жи­те, что A1P : PB1 = 2 : 1, где P  — точка пе­ре­се­че­ния плос­ко­сти α с реб­ром A1B1.

б)  Най­ди­те угол на­кло­на плос­ко­сти α к плос­ко­сти грани BB1C1C.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 15 № 510073
i

Ре­ши­те не­ра­вен­ство  ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те левая круг­лая скоб­ка 4 плюс 3x минус x в квад­ра­те пра­вая круг­лая скоб­ка плюс 7 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 плюс 3x минус x в квад­ра­те пра­вая круг­лая скоб­ка плюс 10 боль­ше 0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 17 № 510074
i

Дана рав­но­бед­рен­ная тра­пе­ция ABCD с ос­но­ва­ни­я­ми BC и AD. На сто­ро­не AB как на диа­мет­ре по­стро­е­на окруж­ность с цен­тром в точке O, ка­са­ю­ща­я­ся сто­ро­ны CD и по­втор­но пе­ре­се­ка­ю­щая ос­но­ва­ние AD в точке H. Точка Q  — се­ре­ди­на сто­ро­ны CD.

а)  До­ка­жи­те, что OQDH  — па­рал­ле­ло­грамм.

б)  Най­ди­те AD, если ∠BAD  =  60°, BC  =  2.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 16 № 510075
i

Вла­ди­мир яв­ля­ет­ся вла­дель­цем двух за­во­дов в раз­ных го­ро­дах. На за­во­дах про­из­во­дят­ся аб­со­лют­но оди­на­ко­вые то­ва­ры, но на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, ис­поль­зу­ет­ся более со­вер­шен­ное обо­ру­до­ва­ние. В ре­зуль­та­те, если ра­бо­чие на за­во­де, рас­по­ло­жен­ном в пер­вом го­ро­де, тру­дят­ся сум­мар­но t2 часов в не­де­лю, то за эту не­де­лю они про­из­во­дят 2t еди­ниц то­ва­ра; если ра­бо­чие на за­во­де, рас­по­ло­жен­ном во вто­ром го­ро­де, тру­дят­ся сум­мар­но t2 часов в не­де­лю, то за эту не­де­лю они про­из­во­дят 5t еди­ниц то­ва­ра.

За каж­дый час ра­бо­ты (на каж­дом из за­во­дов) Вла­ди­мир пла­тит ра­бо­че­му 500 руб­лей. Вла­ди­ми­ру нужно каж­дую не­де­лю про­из­во­дить 580 еди­ниц то­ва­ра. Какую наи­мень­шую сумму при­дет­ся тра­тить еже­не­дель­но на опла­ту труда ра­бо­чих?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

20
Тип 18 № 510076
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: левая круг­лая скоб­ка y в квад­ра­те минус xy минус 4y плюс 2x плюс 4 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 4 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 минус y конец ар­гу­мен­та конец дроби =0,a=x плюс y. конец си­сте­мы .

имеет един­ствен­ное ре­ше­ние.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

21
Тип 19 № 510077
i

На доске на­пи­са­ли не­сколь­ко не обя­за­тель­но раз­лич­ных дву­знач­ных на­ту­раль­ных чисел без нулей в де­ся­тич­ной за­пи­си. Сумма этих чисел ока­за­лась рав­ной 2970. В каж­дом числе по­ме­ня­ли ме­ста­ми первую и вто­рую цифры (на­при­мер, число 16 за­ме­ни­ли на число 61).

а)  При­ве­ди­те при­мер ис­ход­ных чисел, для ко­то­рых сумма по­лу­чив­ших­ся чисел ровно в 3 раза мень­ше, чем сумма ис­ход­ных чисел.

б)  Могла ли сумма по­лу­чив­ших­ся чисел быть ровно в 5 раз мень­ше, чем сумма ис­ход­ных чисел?

в)  Най­ди­те наи­мень­шее воз­мож­ное зна­че­ние суммы по­лу­чив­ших­ся чисел.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.