Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 34184540
1.  
i

На ав­то­за­прав­ке кли­ент отдал кас­си­ру 1000 руб­лей и залил в бак 28 лит­ров бен­зи­на по цене 28 руб. 50 коп. за литр. Сколь­ко руб­лей сдачи он дол­жен по­лу­чить у кас­си­ра?

2.  
i

На диа­грам­ме по­ка­за­на сред­няя тем­пе­ра­ту­ра воз­ду­ха (в гра­ду­сах Цель­сия) в Санкт-Пе­тер­бур­ге за каж­дый месяц 1988 года. По го­ри­зон­та­ли ука­зы­ва­ют­ся ме­ся­цы, по вер­ти­ка­ли  — тем­пе­ра­ту­ра в гра­ду­сах Цель­сия. Опре­де­ли­те по диа­грам­ме, сколь­ко было ме­ся­цев, когда сред­не­ме­сяч­ная тем­пе­ра­ту­ра была выше нуля.

3.  
i

Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка, изоб­ра­жен­но­го на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см \times 1 см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.

4.  
i

Из рай­он­но­го цен­тра в де­рев­ню еже­днев­но ходит ав­то­бус. Ве­ро­ят­ность того, что в по­не­дель­ник в ав­то­бу­се ока­жет­ся мень­ше 20 пас­са­жи­ров, равна 0,94. Ве­ро­ят­ность того, что ока­жет­ся мень­ше 15 пас­са­жи­ров, равна 0,56. Най­ди­те ве­ро­ят­ность того, что число пас­са­жи­ров будет от 15 до 19.

5.  
i

Най­ди­те ко­рень урав­не­ния  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3x минус 4 конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 4x минус 11 конец дроби .

6.  
i

Сто­ро­на пра­виль­но­го тре­уголь­ни­ка равна  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та . Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около этого тре­уголь­ни­ка.

7.  
i

На ри­сун­ке изоб­ражён гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка и во­семь точек на оси абс­цисс: x_1, x_2, x_3, \dots, x_8. В сколь­ких из этих точек про­из­вод­ная функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка по­ло­жи­тель­на?

8.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной ше­сти­уголь­ной приз­мы, опи­сан­ной около ци­лин­дра, ра­ди­ус ос­но­ва­ния ко­то­ро­го равен  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а вы­со­та равна 2.

9.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 8 синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .

10.  
i

Во­до­лаз­ный ко­ло­кол, со­дер­жа­щий \nu = 2 моль воз­ду­ха при дав­ле­нии p_1 = 1,5 ат­мо­сфе­ры, мед­лен­но опус­ка­ют на дно водоёма. При этом про­ис­хо­дит изо­тер­ми­че­ское сжа­тие воз­ду­ха до ко­неч­но­го дав­ле­ния p_2. Ра­бо­та, со­вер­ша­е­мая водой при сжа­тии воз­ду­ха, опре­де­ля­ет­ся вы­ра­же­ни­ем A = альфа \nu T ло­га­рифм по ос­но­ва­нию 2 дробь: чис­ли­тель: p_2 , зна­ме­на­тель: p_1 конец дроби , где  альфа =5,75  — по­сто­ян­ная, T = 300 К  — тем­пе­ра­ту­ра воз­ду­ха. Най­ди­те, какое дав­ле­ние p_2 (в атм) будет иметь воз­дух в ко­ло­ко­ле, если при сжа­тии воз­ду­ха была со­вер­ше­на ра­бо­та в 6900 Дж.

11.  
i

Вере надо под­пи­сать 640 от­кры­ток. Еже­днев­но она под­пи­сы­ва­ет на одно и то же ко­ли­че­ство от­кры­ток боль­ше по срав­не­нию с преды­ду­щим днем. Из­вест­но, что за пер­вый день Вера под­пи­са­ла 10 от­кры­ток. Опре­де­ли­те, сколь­ко от­кры­ток было под­пи­са­но за чет­вер­тый день, если вся ра­бо­та была вы­пол­не­на за 16 дней.

13.  
i

а)  Ре­ши­те урав­не­ние  левая круг­лая скоб­ка ко­рень из 2 синус в квад­ра­те x плюс ко­си­нус x минус ко­рень из 2 пра­вая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: минус 6 синус x конец ар­гу­мен­та =0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка 2 Пи ; дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

14.  
i

В кубе ABCDA1B1C1D1 рёбра равны 1. На про­дол­же­нии от­рез­ка A1C1 за точку C1 от­ме­че­на точка M так, что A1C1  =  C1M, а на про­дол­же­нии от­рез­ка B1C за точку C от­ме­че­на точка N так, что B1C  =  CN.

а)  До­ка­жи­те, что MN  =  MB1.

б)  Най­ди­те рас­сто­я­ние между пря­мы­ми B1C1 и MN.

15.  
i

Ре­ши­те не­ра­вен­ство: x ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та минус 7x плюс 14 ко­рень из: на­ча­ло ар­гу­мен­та: 8 конец ар­гу­мен­та боль­ше 57.

16.  
i

В тре­уголь­ни­ке АВС угол АВС равен 60°. Окруж­ность, впи­сан­ная в тре­уголь­ник, ка­са­ет­ся сто­ро­ны AC в точке M.

а)  До­ка­жи­те, что от­ре­зок BM не боль­ше утро­ен­но­го ра­ди­у­са впи­сан­ной в тре­уголь­ник окруж­но­сти.

б)  Най­ди­те  синус \angle BMC, если из­вест­но, что от­ре­зок ВМ в 2,5 раза боль­ше ра­ди­у­са впи­сан­ной в тре­уголь­ник окруж­но­сти.

17.  
i

В июле пла­ни­ру­ет­ся взять кре­дит в банке на сумму 9 млн руб­лей на не­ко­то­рый срок (целое число лет). Усло­вия его воз­вра­та та­ко­вы:

—  каж­дый ян­варь долг воз­рас­та­ет на 20% по срав­не­нию с кон­цом преды­ду­ще­го года;

—  с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить часть долга;

—  в июле каж­до­го года долг дол­жен быть на одну и ту же сумму мень­ше долга на июль преды­ду­ще­го года.

Чему будет равна общая сумма вы­плат после пол­но­го по­га­ше­ния кре­ди­та, если наи­боль­ший го­до­вой платёж со­ста­вит 3,6 млн руб­лей?

18.  
i

Най­ди­те все такие зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: a синус x плюс ко­си­нус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: a ко­си­нус x плюс синус x конец ар­гу­мен­та имеет ре­ше­ния на от­рез­ке  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 4 конец дроби пра­вая квад­рат­ная скоб­ка .

19.  
i

а)  Пред­ставь­те число  дробь: чис­ли­тель: 33, зна­ме­на­тель: 100 конец дроби в виде суммы не­сколь­ких дро­бей, все чис­ли­те­ли ко­то­рых  — еди­ни­ца, а зна­ме­на­те­ли  — по­пар­но раз­лич­ные на­ту­раль­ные числа.

б)  Пред­ставь­те число  дробь: чис­ли­тель: 15, зна­ме­на­тель: 91 конец дроби в виде суммы не­сколь­ких дро­бей, все чис­ли­те­ли ко­то­рых  — еди­ни­ца, а зна­ме­на­те­ли  — по­пар­но раз­лич­ные на­ту­раль­ные числа.

в)  Най­ди­те все воз­мож­ные пары на­ту­раль­ных чисел m и n, для ко­то­рых m мень­ше или равно n и  дробь: чис­ли­тель: 1, зна­ме­на­тель: m конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: n конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 14 конец дроби .