Вариант № 22759785

Досрочная волна ЕГЭ по математике 29.03.2019. Вариант 1

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 525105
i

По­ка­за­ния счётчика элек­тро­энер­гии 1 ав­гу­ста со­став­ля­ли 43 364 кВт·ч, а 1 сен­тяб­ря  — 43 544 кВт·ч. Сколь­ко нужно за­пла­тить за элек­тро­энер­гию за ав­густ, если 1 кВт · ч элек­тро­энер­гии стоит 5 руб­лей 10 ко­пе­ек? Ответ дайте в руб­лях.


Ответ:

2
Тип Д1 № 525106
i

В ходе хи­ми­че­ской ре­ак­ции ко­ли­че­ство ис­ход­но­го ве­ще­ства (ре­а­ген­та), ко­то­рое еще не всту­пи­ло в ре­ак­цию, со вре­ме­нем по­сте­пен­но умень­ша­ет­ся. На ри­сун­ке эта за­ви­си­мость пред­став­ле­на гра­фи­ком. На оси абс­цисс от­кла­ды­ва­ет­ся время в ми­ну­тах, про­шед­шее с мо­мен­та на­ча­ла ре­ак­ции, на оси ор­ди­нат  — масса остав­ше­го­ся ре­а­ген­та, ко­то­рый еще не всту­пил в ре­ак­цию (в грам­мах). Опре­де­ли­те по гра­фи­ку, сколь­ко грам­мов ре­а­ген­та всту­пи­ло в ре­ак­цию за первую ми­ну­ту?


Ответ:

3
Тип Д4 № 525107
i

Най­ди­те пло­щадь тра­пе­ции, изоб­ра­жен­ной на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см \times 1 см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.


Ответ:

4
Тип 4 № 525108
i

Перед на­ча­лом фут­боль­но­го матча судья бро­са­ет мо­нет­ку, чтобы опре­де­лить, какая из ко­манд начнёт игру с мячом. Ко­ман­да «Труд» иг­ра­ет три матча с раз­ны­ми ко­ман­да­ми. Най­ди­те ве­ро­ят­ность того, что в этих играх «Труд» вы­иг­ра­ет жре­бий ровно один раз.


Ответ:

5

Най­ди­те ко­рень урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 13 плюс 2x конец ар­гу­мен­та =5.


Ответ:

6
Тип 1 № 525110
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Угол ABD равен 61°, угол CAD равен 37° Най­ди­те угол ABC. Ответ дайте в гра­ду­сах.


Ответ:

7
Тип 8 № 525111
i

На ри­сун­ке изоб­ражён гра­фик y=f' левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка   — про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­де­лен­ной на ин­тер­ва­ле (−3; 8). Най­ди­те точку ми­ни­му­ма функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка .


Ответ:

8
Тип 3 № 525112
i

В пря­мо­уголь­ном па­рал­ле­ле­пи­пе­де ABCDA1B1C1D1 из­вест­но, что AB  =  5, BC  =  4, AA1  =  3. Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, B, C, B1.


Ответ:

9

10

Уста­нов­ка для де­мон­стра­ции адиа­ба­ти­че­ско­го сжа­тия пред­став­ля­ет собой сосуд с порш­нем, резко сжи­ма­ю­щим газ. При этом объём и дав­ле­ние свя­за­ны со­от­но­ше­ни­ем p_1V_1 в сте­пе­ни левая круг­лая скоб­ка 1,4 пра­вая круг­лая скоб­ка =p_2V_2 в сте­пе­ни левая круг­лая скоб­ка 1,4 пра­вая круг­лая скоб­ка , где p_1 и p_2  — дав­ле­ние газа (в ат­мо­сфе­рах) в на­чаль­ном и ко­неч­ном со­сто­я­ни­ях, V_1 и V_2  — объём газа (в лит­рах) в на­чаль­ном и ко­неч­ном со­сто­я­ни­ях. Из­на­чаль­но объём газа равен 256 л, а дав­ле­ние газа равно одной ат­мо­сфе­ре. До ка­ко­го объёма нужно сжать газ, чтобы дав­ле­ние в со­су­де стало 128 ат­мо­сфер? Ответ дайте в лит­рах.


Ответ:

11
Тип 10 № 525115
i

Име­ет­ся два спла­ва. Пер­вый сплав со­дер­жит 5% меди, вто­рой  — 13% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 9 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 10% меди. Най­ди­те массу тре­тье­го спла­ва. Ответ дайте в ки­ло­грам­мах.


Ответ:

12

13
Тип 13 № 525117
i

а)  Ре­ши­те урав­не­ние 2\log в квад­ра­те _2 левая круг­лая скоб­ка 2 ко­си­нус x пра­вая круг­лая скоб­ка минус 9 ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка 2 ко­си­нус x пра­вая круг­лая скоб­ка плюс 4=0.

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус 2 Пи ; минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 525118
i

Дана пи­ра­ми­да SABC, в ко­то­рой SC=SB=AB=AC= ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та , SA=BC=2 ко­рень из 5 .

а)  До­ка­жи­те, что ребро SA пер­пен­ди­ку­ляр­но ребру BC.

б)  Най­ди­те рас­сто­я­ние между реб­ра­ми BC и SA.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 525119
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: 9 в сте­пе­ни x плюс 2 умно­жить на 3 в сте­пе­ни x минус 117, зна­ме­на­тель: 3 в сте­пе­ни x минус 27 конец дроби \leqslant1.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16

Дана тра­пе­ция ABCD с ос­но­ва­ни­я­ми BC и AD. Точки M и N яв­ля­ют­ся се­ре­ди­на­ми сто­рон AB и CD со­от­вет­ствен­но. Окруж­ность, про­хо­дя­щая через точки B и С, пе­ре­се­ка­ет от­рез­ки BM и CN в точ­ках P и Q (от­лич­ных от кон­цов от­рез­ков).

а)  До­ка­жи­те, что точки M, N, P и Q лежат на одной окруж­но­сти.

б)  Най­ди­те QN, если от­рез­ки DP и PC пер­пен­ди­ку­ляр­ны, AB  =  21, BC  =  4, CD  =  20, AD  =  17.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 525121
i

В июле 2019 года пла­ни­ру­ет­ся взять кре­дит в банке на три года в раз­ме­ре S млн руб­лей, где S  — целое число. Усло­вия его воз­вра­та та­ко­вы:

  — каж­дый ян­варь долг уве­ли­чи­ва­ет­ся на 30% по срав­не­нию с кон­цом преды­ду­ще­го года;

  — с фев­ра­ля по июнь каж­до­го года не­об­хо­ди­мо вы­пла­тить одним пла­те­жом часть долга;

  — в июле каж­до­го года долг дол­жен со­став­лять часть кре­ди­та в со­от­вет­ствии со сле­ду­ю­щей таб­ли­цей

 

Месяц и годИюль 2019Июль 2020Июль 2021Июль 2022
Долг

(в млн руб­лей)

S0,7S0,3S0

 

Най­ди­те наи­мень­шее S, при ко­то­ром каж­дая из вы­плат будет боль­ше 3 млн. руб.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых наи­мень­шее зна­че­ние функ­ции

f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x минус 2|x| плюс |x в квад­ра­те минус 2 левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка x плюс a в квад­ра­те плюс 2a|

боль­ше −4?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 525123
i

Вася и Петя ре­ша­ли за­да­чи из сбор­ни­ка, и они оба ре­ши­ли все за­да­чи этого сбор­ни­ка. Каж­дый день Вася решал на одну за­да­чу боль­ше, чем в преды­ду­щий день, а Петя решал на две за­да­чи боль­ше, чем в преды­ду­щий день. Они на­ча­ли ре­шать за­да­чи в один день, при этом в пер­вый день каж­дый из них решил хотя бы одну за­да­чу.

а)  Могло ли по­лу­чить­ся так, что Вася в пер­вый день решил на одну за­да­чу мень­ше, чем Петя, а Петя решил все за­да­чи из сбор­ни­ка ровно за 5 дней?

б)  Могло ли по­лу­чить­ся так, что Вася в пер­вый день решил на одну за­да­чу боль­ше, чем Петя, а Петя решил все за­да­чи из сбор­ни­ка ровно за 4 дня?

в)  Какое наи­мень­шее ко­ли­че­ство задач могло быть в сбор­ни­ке если каж­дый из ребят решал за­да­чи более 6 дней, при­чем в пер­вый день один из маль­чи­ков решил на одну за­да­чу боль­ше чем дру­гой?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.