Вариант № 10735977

Задания 19 (С7) ЕГЭ 2014

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 19 № 505427
i

Семь экс­пер­тов оце­ни­ва­ют ки­но­фильм. Каж­дый из них вы­став­ля­ет оцен­ку  — целое число бал­лов от 0 до 12 вклю­чи­тель­но. Из­вест­но, что все экс­пер­ты вы­ста­ви­ли раз­лич­ные оцен­ки. По ста­рой си­сте­ме оце­ни­ва­ния рей­тинг ки­но­филь­ма  — это сред­нее ариф­ме­ти­че­ское всех оце­нок экс­пер­тов. По новой си­сте­ме оце­ни­ва­ния рей­тинг ки­но­филь­ма оце­ни­ва­ют сле­ду­ю­щим об­ра­зом: от­бра­сы­ва­ют­ся наи­мень­шая и наи­боль­шая оцен­ки и под­счи­ты­ва­ет­ся сред­нее ариф­ме­ти­че­ское остав­ших­ся оце­нок.

а)  Может ли раз­ность рей­тин­гов, вы­чис­лен­ных по ста­рой и новой си­сте­мам оце­ни­ва­ния, рав­нять­ся  дробь: чис­ли­тель: 1, зна­ме­на­тель: 25 конец дроби ?

б)  Может ли раз­ность рей­тин­гов, вы­чис­лен­ных по ста­рой и новой си­сте­мам оце­ни­ва­ния, рав­нять­ся  дробь: чис­ли­тель: 1, зна­ме­на­тель: 35 конец дроби ?

в)  Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние раз­но­сти рей­тин­гов, вы­чис­лен­ных по ста­рой и новой си­сте­мам оце­ни­ва­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2
Тип 19 № 514199
i

На сайте про­во­дит­ся опрос, кого из 134 фут­бо­ли­стов по­се­ти­те­ли сайта счи­та­ют луч­шим по ито­гам се­зо­на. Каж­дый по­се­ти­тель го­ло­су­ет за од­но­го фут­бо­ли­ста. На сайте отоб­ра­жа­ет­ся рей­тинг каж­до­го фут­бо­ли­ста  — доля го­ло­сов, от­дан­ных за него, в про­цен­тах, округлённая до це­ло­го числа. На­при­мер, числа 9,3, 10,5 и 12,7 округ­ля­ют­ся до 9, 11 и 13 со­от­вет­ствен­но.

а)  Всего про­го­ло­со­ва­ло 17 по­се­ти­те­лей сайта, и рей­тинг пер­во­го фут­бо­ли­ста стал равен 41. Уви­дев это, Вася отдал свой голос за дру­го­го фут­бо­ли­ста. Чему те­перь равен рей­тинг пер­во­го фут­бо­ли­ста?

б)  Вася про­го­ло­со­вал за не­ко­то­ро­го фут­бо­ли­ста. Могла ли после этого сумма рей­тин­гов всех фут­бо­ли­стов умень­шить­ся не менее чем на 27?

в)  Какое наи­боль­шее зна­че­ние может при­ни­мать сумма рей­тин­гов всех фут­бо­ли­стов?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип 19 № 505503
i

а)  Можно ли число 2014 пред­ста­вить в виде суммы двух раз­лич­ных на­ту­раль­ных чисел с оди­на­ко­вой сум­мой цифр?

б)  Можно ли число 199 пред­ста­вить в виде суммы двух раз­лич­ных на­ту­раль­ных чисел с оди­на­ко­вой сум­мой цифр?

в)  Най­ди­те наи­мень­шее на­ту­раль­ное число, ко­то­рое можно пред­ста­вить в виде суммы пяти раз­лич­ных на­ту­раль­ных чисел с оди­на­ко­вой сум­мой цифр.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4

В груп­пе по­ров­ну юно­шей и де­ву­шек. Юноши от­прав­ля­ли элек­трон­ные пись­ма де­вуш­кам. Каж­дый юноша от­пра­вил или 4 пись­ма, или 21 пись­мо, причём и тех, и дру­гих юно­шей было не менее двух. Воз­мож­но, что какой-⁠то юноша от­пра­вил какой-⁠то де­вуш­ке не­сколь­ко писем.

а)  Могло ли ока­зать­ся так, что каж­дая де­вуш­ка по­лу­чи­ла ровно 7 писем?

б)  Какое наи­мень­шее ко­ли­че­ство де­ву­шек могло быть в груп­пе, если из­вест­но, что все они по­лу­чи­ли писем по­ров­ну?

в)  Пусть все де­вуш­ки по­лу­чи­ли раз­лич­ное ко­ли­че­ство писем (воз­мож­но, какая-то де­вуш­ка не по­лу­чи­ла писем во­об­ще). Ка­ко­во наи­боль­шее воз­мож­ное ко­ли­че­ство де­ву­шек в такой груп­пе?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 19 № 514201
i

Из пер­вых 22 на­ту­раль­ных чисел 1, 2, ..., 22 вы­бра­ли 2k раз­лич­ных чисел. Вы­бран­ные числа раз­би­ли на пары и по­счи­та­ли суммы чисел в каж­дой паре. Ока­за­лось, что все по­лу­чен­ные суммы раз­лич­ны и не пре­вос­хо­дят 27.

а)  Может ли по­лу­чить­ся так, что сумма всех 2k вы­бран­ных чисел рав­ня­ет­ся 170 и в каж­дой паре одно из чисел ровно в три раза боль­ше дру­го­го?

б)  Может ли число k быть рав­ным 11?

в)  Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние числа k.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6

На окруж­но­сти не­ко­то­рым спо­со­бом рас­ста­ви­ли на­ту­раль­ные числа от 1 до 21 (каж­дое число по­став­ле­но по од­но­му разу). Затем для каж­дой пары со­сед­них чисел нашли раз­ность боль­ше­го и мень­ше­го.

а)  Могли ли все по­лу­чен­ные раз­но­сти быть не мень­ше 11?

б)  Могли ли все по­лу­чен­ные раз­но­сти быть не мень­ше 10?

в)  По­ми­мо по­лу­чен­ных раз­но­стей, для каж­дой пары чисел, сто­я­щих через одно, нашли раз­ность боль­ше­го и мень­ше­го. Для ка­ко­го наи­боль­ше­го це­ло­го числа k можно так рас­ста­вить числа, чтобы все раз­но­сти были не мень­ше k?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

7
Тип 19 № 505292
i

Целое число S яв­ля­ет­ся сум­мой не менее трёх по­сле­до­ва­тель­ных чле­нов не­по­сто­ян­ной ариф­ме­ти­че­ской про­грес­сии, со­сто­я­щей из целых чисел.

а)  Может ли S рав­нять­ся 8?

б)  Может ли S рав­нять­ся 1?

в)  Най­ди­те все зна­че­ния, ко­то­рые может при­ни­мать S.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

8
Тип 19 № 510807
i

Целое число S яв­ля­ет­ся сум­мой не менее трех по­сле­до­ва­тель­ных чле­нов не­по­сто­ян­ной ариф­ме­ти­че­ской про­грес­сии, со­сто­я­щей из целых чисел.

а)  Может ли S рав­нять­ся 8?

б)  Может ли S рав­нять­ся 1?

в)  Най­ди­те все зна­че­ния, ко­то­рые может при­ни­мать S.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

9
Тип 19 № 510813
i

Целое число S яв­ля­ет­ся сум­мой не менее пяти по­сле­до­ва­тель­ных чле­нов не­по­сто­ян­ной ариф­ме­ти­че­ской про­грес­сии, со­сто­я­щей из целых чисел.

а)  Может ли S рав­нять­ся 9?

б)  Может ли S рав­нять­ся 2?

в)  Най­ди­те все зна­че­ния, ко­то­рые может при­ни­мать S.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

10
Тип 19 № 510853
i

На сайте про­во­дит­ся опрос, кого из фут­бо­ли­стов по­се­ти­те­ли сайта счи­та­ют луч­шим по ито­гам се­зо­на. Каж­дый по­се­ти­тель го­ло­су­ет за од­но­го фут­бо­ли­ста. На сайте отоб­ра­жа­ет­ся рей­тинг каж­до­го фут­бо­ли­ста – доля го­ло­сов, от­дан­ных за него, в про­цен­тах, округ­лен­ная до це­ло­го числа. На­при­мер, числа 9,3, 10,5 и 12,7 округ­ля­ют­ся до 9, 11 и 13 со­от­вет­ствен­но.

а)  Всего про­го­ло­со­ва­ло 11 по­се­ти­те­лей сайта. Мог ли рей­тинг не­ко­то­ро­го фут­бо­ли­ста быть рав­ным 38?

б)  Пусть по­се­ти­те­ли сайта от­да­ва­ли го­ло­са за од­но­го из трех фут­бо­ли­стов. Могло ли быть так, что все три фут­бо­ли­ста по­лу­чи­ли раз­ное число го­ло­сов, но их рей­тин­ги оди­на­ко­вы?

в)  На сайте отоб­ра­жа­лось, что рей­тинг не­ко­то­ро­го фут­бо­ли­ста равен 5. Это число не из­ме­ни­лось и после того, как Вася отдал свой голос за этого фут­бо­ли­ста. При каком наи­мень­шем числе от­дан­ных за всех фут­бо­ли­стов го­ло­сов, вклю­чая Васин голос, такое воз­мож­но?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

11
Тип 19 № 510859
i

На сайте про­во­дит­ся опрос, кого из фут­бо­ли­стов по­се­ти­те­ли сайта счи­та­ют луч­шим по ито­гам се­зо­на. Каж­дый по­се­ти­тель го­ло­су­ет за од­но­го фут­бо­ли­ста. На сайте отоб­ра­жа­ет­ся рей­тинг каж­до­го фут­бо­ли­ста  — доля го­ло­сов, от­дан­ных за него, в про­цен­тах, округ­лен­ная до це­ло­го числа. На­при­мер, числа 9,3, 10,5 и 12,7 округ­ля­ют­ся до 9, 11 и 13 со­от­вет­ствен­но.

а)  Всего про­го­ло­со­ва­ло 13 по­се­ти­те­лей сайта. Го­ло­са рас­пре­де­ли­лись так, что рей­тинг не­ко­то­ро­го фут­бо­ли­ста стал рав­ным 31. Затем Вася про­го­ло­со­вал за этого фут­бо­ли­ста. Каков те­перь рей­тинг фут­бо­ли­ста с учётом го­ло­са Васи?

б)  Го­ло­са рас­пре­де­ля­ют между двумя фут­бо­ли­ста­ми. Может ли сум­мар­ный рей­тинг быть боль­ше 100?

в)  На сайте отоб­ра­жа­лось, что рей­тинг не­ко­то­ро­го фут­бо­ли­ста равен 7. После того как Вася отдал свой голос за этого фут­бо­ли­ста, рей­тинг стал равен 9. При каком наи­боль­шем числе от­дан­ных за всех фут­бо­ли­стов го­ло­сов, вклю­чая Васин голос, такое воз­мож­но?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

12
Тип 19 № 510865
i

Семь экс­пер­тов оце­ни­ва­ют ки­но­фильм. Каж­дый из них вы­став­ля­ет оцен­ку  — целое число бал­лов от 0 до 10 вклю­чи­тель­но. Из­вест­но, что все экс­пер­ты вы­ста­ви­ли раз­лич­ные оцен­ки. По ста­рой си­сте­ме оце­ни­ва­ния рей­тинг ки­но­филь­ма  — это сред­нее ариф­ме­ти­че­ское всех оце­нок экс­пер­тов. По новой си­сте­ме оце­ни­ва­ния рей­тинг ки­но­филь­ма оце­ни­ва­ют сле­ду­ю­щим об­ра­зом: от­бра­сы­ва­ют­ся наи­мень­шая и наи­боль­шая оцен­ки и под­счи­ты­ва­ет­ся сред­нее ариф­ме­ти­че­ское остав­ших­ся оце­нок.

а)  Может ли раз­ность рей­тин­гов, вы­чис­лен­ных по ста­рой и новой си­сте­мам оце­ни­ва­ния рав­нять­ся  дробь: чис­ли­тель: 1, зна­ме­на­тель: 30 конец дроби ?

б)  Может ли раз­ность рей­тин­гов, вы­чис­лен­ных по ста­рой и новой си­сте­мам оце­ни­ва­ния рав­нять­ся  дробь: чис­ли­тель: 1, зна­ме­на­тель: 35 конец дроби ?

в)  Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние раз­но­сти рей­тин­гов, вы­чис­лен­ных по ста­рой и новой си­сте­мам оце­ни­ва­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

13
Тип 19 № 510877
i

Не­сколь­ко экс­пер­тов оце­ни­ва­ют не­сколь­ко ки­но­филь­мов. Каж­дый из них вы­став­ля­ет оцен­ку каж­до­му ки­но­филь­му  — целое число бал­лов от 1 до 10 вклю­чи­тель­но. Из­вест­но, что каж­до­му ки­но­филь­му все экс­пер­ты вы­ста­ви­ли раз­лич­ные оцен­ки. Рей­тинг ки­но­филь­ма  — это сред­нее гео­мет­ри­че­ское оце­нок всех экс­пер­тов. Сред­нее гео­мет­ри­че­ское чисел a_1,...,a_n равно  ко­рень n сте­пе­ни из: на­ча­ло ар­гу­мен­та: a_1 умно­жить на ...a_n конец ар­гу­мен­та . Ока­за­лолсь, что рей­тин­ги всех ки­но­филь­мов  — это раз­лич­ные целые числа.

а)  Могло ли быть 2 экс­пер­та и 5 ки­но­филь­мов?

б)  Могло ли быть 3 экс­пер­та и 4 ки­но­филь­ма?

в)  При каком наи­боль­шем ко­ли­че­стве экс­пер­тов опи­сан­ная си­ту­а­ция воз­мож­на для од­но­го ки­но­филь­ма?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.