
а) Можно ли число 2014 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?
б) Можно ли число 199 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?
в) Найдите наименьшее натуральное число, которое можно представить в виде суммы пяти различных натуральных чисел с одинаковой суммой цифр.
а) Например числа 2006 и 8 имеют одинаковую сумму цифр и в сумме дают 2014.
б) Предположим, что число 199 можно представить в виде суммы двух натуральных чисел с одинаковой суммой цифр. Пусть одно из этих чисел состоит из a сотен, b десятков и c единиц. Тогда другое число состоит из 1 − a сотен, 9 − b десятков и 9 − c единиц. Суммы цифр этих чисел равны a + b + c и 19 − a − b − c соответственно. Они имеют разную чётность и не могут быть одинаковыми.
в) Наименьшее натуральное число, которое можно представить в виде суммы пяти различных натуральных чисел с одинаковой фиксированной суммой цифр, равно сумме пяти наименьших чисел с этой суммой цифр.
Для сумм 1, 2, 3 и 4 имеем соответственно:
Если сумма цифр равна 5 или больше, обозначим её через a. Тогда наименьшее из таких чисел − как минимум a. Числа с одинаковой суммой цифр дают одинаковые остатки при делении на 9, поэтому идут минимум через 9. Значит, их сумма не меньше чем
Получаем, что искомое число равно 110.
Ответ: а) да; б) нет; в) 110.
Критерии оценивания выполнения задания | Баллы |
---|---|
Верно получены все перечисленные (см. критерий на 1 балл) результаты. | 4 |
Верно получены три из перечисленных (см. критерий на 1 балл) результатов. | 3 |
Верно получены два из перечисленных (см. критерий на 1 балл) результатов. | 2 |
Верно получен один из следующий результатов: — обоснованное решение в п. а; — пример в п. б; — искомая оценка в п. в; — пример в п. в, обеспечивающий точность предыдущей оценки. | 1 |
Решение не соответствует ни одному из критериев, перечисленных выше. | 0 |
Максимальный балл | 4 |