Вариант № 5355075

ЕГЭ по математике 05.06.2014. Основная волна. Восток.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип 13 № 510854
i

а)  Ре­ши­те урав­не­ние 2 ко­си­нус в квад­ра­те левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс x пра­вая круг­лая скоб­ка = синус 2x.

б)  Ука­жи­те корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: 9 Пи , зна­ме­на­тель: 2 конец дроби ; минус 3 Пи пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

2

В тре­уголь­ной пи­ра­ми­де MABC, в ос­но­ва­ни­ии ко­то­рой лежит пра­виль­ный тре­уголь­ник ABC, ребро MB пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния, сто­ро­ны ос­но­ва­ния равны 6, а ребро MA равно 11. На ребре AC на­хо­дит­ся точка D, на ребре AB точка E, а на ребре AM  — точка F. Из­вест­но, что AD  =  4 и BE  =  2, F  — се­ре­ди­на AM.

а)  До­ка­жи­те, что тре­уголь­ник ADE − рав­но­сто­рон­ний.

б)  Най­ди­те пло­щадь се­че­ния пи­ра­ми­ды плос­ко­стью, про­хо­дя­щей через точки E, D и F.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

3
Тип Д11 C3 № 510856
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний 16 в сте­пе­ни левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус 9 умно­жить на 4 в сте­пе­ни левая круг­лая скоб­ка x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс 1\geqslant0, левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 0. конец си­сте­мы


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

4
Тип 14 № 510857
i

В ост­ро­уголь­ном тре­уголь­ни­ке ABC про­ве­ли вы­со­ту BH из точки H на сто­ро­ны AB и BC опу­сти­ли пер­пен­ди­ку­ля­ры HK и HM со­от­вет­ствен­но.

а)  До­ка­жи­те, что тре­уголь­ник MBK по­до­бен тре­уголь­ни­ку ABC.

б)  Най­ди­те от­но­ше­ние пло­ща­ди тре­уголь­ни­ка MBK к пло­ща­ди четырёхуголь­ни­ка AKMC, если BH  =  1, а ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка ABC равен 4.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

5
Тип 18 № 510858
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при ко­то­рых урав­не­ние

 левая круг­лая скоб­ка |x плюс 7| минус |x минус a| пра­вая круг­лая скоб­ка в квад­ра­те минус 13a левая круг­лая скоб­ка |x плюс 7| минус |x минус a| пра­вая круг­лая скоб­ка плюс 30a в квад­ра­те плюс 21a минус 9=0

имеет ровно два ре­ше­ния.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

6
Тип 19 № 510859
i

На сайте про­во­дит­ся опрос, кого из фут­бо­ли­стов по­се­ти­те­ли сайта счи­та­ют луч­шим по ито­гам се­зо­на. Каж­дый по­се­ти­тель го­ло­су­ет за од­но­го фут­бо­ли­ста. На сайте отоб­ра­жа­ет­ся рей­тинг каж­до­го фут­бо­ли­ста  — доля го­ло­сов, от­дан­ных за него, в про­цен­тах, округ­лен­ная до це­ло­го числа. На­при­мер, числа 9,3, 10,5 и 12,7 округ­ля­ют­ся до 9, 11 и 13 со­от­вет­ствен­но.

а)  Всего про­го­ло­со­ва­ло 13 по­се­ти­те­лей сайта. Го­ло­са рас­пре­де­ли­лись так, что рей­тинг не­ко­то­ро­го фут­бо­ли­ста стал рав­ным 31. Затем Вася про­го­ло­со­вал за этого фут­бо­ли­ста. Каков те­перь рей­тинг фут­бо­ли­ста с учётом го­ло­са Васи?

б)  Го­ло­са рас­пре­де­ля­ют между двумя фут­бо­ли­ста­ми. Может ли сум­мар­ный рей­тинг быть боль­ше 100?

в)  На сайте отоб­ра­жа­лось, что рей­тинг не­ко­то­ро­го фут­бо­ли­ста равен 7. После того как Вася отдал свой голос за этого фут­бо­ли­ста, рей­тинг стал равен 9. При каком наи­боль­шем числе от­дан­ных за всех фут­бо­ли­стов го­ло­сов, вклю­чая Васин голос, такое воз­мож­но?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.