СДАМ ГИА






Каталог заданий. Числовые наборы на карточках и досках
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 19 № 501694

Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

 

а) Приведите пример задуманных чисел, для которых на доске будет записан набор 2, 4, 6, 8, 10.

б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22?

в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 8, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 33, 34, 41.


Аналоги к заданию № 501694: 501949 501989 502298 Все

Источник: За­да­ния 19 (С7) ЕГЭ 2017
Решение · ·

2
Задание 19 № 509826

На доске написано число 2015 и еще несколько (не менее двух) натуральных чисел, не превосходящих 5000. Все написанные на доске числа различны. Сумма любых двух из написанных чисел делится на какое-нибудь из остальных.

а) Может ли на доске быть написано ровно 1009 чисел?

б) Может ли на доске быть написано ровно пять чисел?

в) Какое наименьшее количество чисел может быть написано на доске?

Источник: ЕГЭ по математике — 2015. До­сроч­ная волна, ре­зерв­ный день (часть С).

3
Задание 19 № 513279

На доске было написано 20 натуральных чисел (не обязательно различных), каждое из которых не превосходит 40. Вместно некоторых из чисел (возможно, одного) на доске написали числа, меньшие первоначальных на единицу. Числа. которые после этого оказались равными 0, с доски стёрли.

а) Могло ли оказаться так, что среднее арифметическое чисел на доске увеличилось?

б) Среднее арифметическое первоначально написанных чисел равнялось 27. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 34?

в) Среднее арифметическое первоначально написанных чисел равнялось 27. Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

4
Задание 19 № 501714

Задумано несколько целых чисел. Набор этих чисел и все их возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Например, если задуманы числа 2, 3, 5, то на доске будет выписан набор 2, 3, 5, 5, 7, 8, 10.

а) На доске выписан набор −11, −7, −5, −4, −1, 2, 6. Какие числа были задуманы?

б) Для некоторых различных задуманных чисел в наборе, выписанном на доске, число 0 встречается ровно 4 раза. Какое наименьшее количество чисел могло быть задумано?

в) Для некоторых задуманных чисел на доске выписан набор. Всегда ли по этому набору можно однозначно определить задуманные числа?


Аналоги к заданию № 501714: 501756 502318 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 03.06.2013. Ос­нов­ная волна. Сибирь. Ва­ри­ант 302.

5
Задание 19 № 500820

На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно −3, среднее арифметическое всех положительных из них равно 4, среднее арифметическое всех отрицательных из них равно −8.

а) Сколько чисел написано на доске?

б) Каких чисел написано больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2013 по математике., Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2018 по математике. Про­филь­ный уровень.

6
Задание 19 № 500005

На доске написано число 7. Раз в минуту Вася дописывает на доску одно число: либо вдвое большее какого-то из чисел на доске, либо равное сумме каких-то двух чисел, написанных на доске (таким образом, через одну минуту на доске появится второе число, через две ― третье и т.д.).

 

а) Может ли в какой-то момент на доске оказаться число 2012?

б) Может ли в какой-то момент сумма всех чисел на доске равняться 63?

в) Через какое наименьшее время на доске может появиться число 784?


Аналоги к заданию № 500005: 500011 Все

Решение · ·

7
Задание 19 № 500017

Каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9 по одному записываю на 8 карточках. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9. После этого числа на каждой карточке складывают, а полученные восемь сумм перемножают.

 

а) Может ли в результате получиться 0?

б) Может ли в результате получиться 1?

в) Какое наименьшее целое неотрицательное число может в результате получиться?


Аналоги к заданию № 500017: 500452 500472 Все


8
Задание 19 № 500023

Имеется 8 карточек. На них записывают по одному каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9. После этого числа на каждой карточке складывают, а полученные восемь сумм перемножают.

 

а) Может ли в результате получиться 0?

б) Может ли в результате получиться 1?

в) Какое наименьшее целое неотрицательное число может в результате получиться?


Аналоги к заданию № 500023: 500966 Все


9
Задание 19 № 500197

Натуральные числа от 1 до 12 разбивают на четыре группы, в каждой из которых есть по крайней мере два числа. Для каждой группы находят сумму чисел этой группы. Для каждой пары групп находят модуль разности найденных сумм и полученные 6 чисел складывают.

 

а) Может ли в результате получиться 0?

б) Может ли в результате получиться 1?

в) Каково наименьшее возможное значение полученного результата?


Аналоги к заданию № 500197: 500478 Все

Источник: И. В. Яковлев: Материалы по математике 2012 год
Решение · ·

10
Задание 19 № 505540

На доске написано более 27, но менее 45 целых чисел. Среднее арифметическое этих чисел равно −5, среднее арифметическое всех положительных из них равно 9, а среднее арифметическое всех отрицательных из них равно −18.

а) Сколько чисел написано на доске?

б) Каких чисел написано больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?


11
Задание 19 № 514201

Из первых 22 натуральных чисел 1, 2, ..., 22 выбрали 2k различных чисел. Выбранные числа разбили на пары и посчитали суммы чисел в каждой паре. Оказалось, что все полученные суммы различны и не превосходят 27.

а) Может ли получиться так, что сумма всех 2k выбранных чисел равняется 170 и в каждой паре одно из чисел ровно в три раза больше другого?

б) Может ли число k быть равным 11?

в) Найдите наибольшее возможное значение числа k.

Источник: За­да­ния 19 (С7) ЕГЭ 2014

12
Задание 19 № 514485

На доске написано 10 неотрицательных чисел. За один ход стираются два числа, а вместо них записывается сумма, округлённая до целого числа (например, вместо 5,5 и 3 записывается 9, а вместо 3,3 и 5 записывается 8).

а) Приведите пример 10 нецелых чисел и последовательности 9 ходов, после которых на доске будет записано число, равное сумме исходных чисел.

б) Может ли после 9 ходов на доске быть написано число, отличающееся от суммы исходных чисел на 7?

в) На какое наибольшее число могут отличаться числа, записанные на доске после 9 ходов, выполненных с одним и тем же набором исходных чисел в различном порядке?

Источник: ЕГЭ — 2016. Ос­нов­ная волна по математике 06.06.2016. Вариант 437. Юг

13
Задание 19 № 514539

На доске написаны числа 2 и 3. За один ход два числа a и b, записанных на доске заменяется на два числа: a + b и 2a − 1 или a + b и 2b − 1.

Пример: числа 2 и 3 заменяются на 3 и 5, на 5 и 5, соответственно.

а) Приведите пример последовательности ходов, после которых одно из чисел, написанных на доске, окажется числом 19.

б) Может ли после 50 ходов одно из двух чисел, написанных на доске, окажется числом 100.

в) Сделали 2015 ходов, причём на доске никогда не было написано одновременно двух равных чисел. Какое наименьшее значение может принимать разность большего и меньшего из полученных чисел?

Источник: ЕГЭ — 2016 по математике. Ос­нов­ная волна 06.06.2016. Вариант 3 (C часть)

14
Задание 19 № 514713

На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 363. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.

б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?

в) Найдите наибольшее возможное значение суммы получившихся чисел.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

15
Задание 19 № 514920

Набор состоит из 33 натуральных чисел, среди которых есть числа 3, 4 и 5.

Среднее арифметическое любых 27 чисел этого набора меньше 2.

а) Может ли такой набор содержать ровно 13 единиц?

б) Может ли такой набор содержать менее 13 единиц?

в) Докажите, что в любом таком наборе есть несколько чисел, сумма которых равна 28.

Источник: И. В. Яковлев: Материалы по математике 2011 год

16
Задание 19 № 514921

Каждое из чисел 1, −2, −3, 4, −5, 7, −8, 9, 10, −11 по одному записывают на 10 карточках. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел 1, −2, −3, 4, −5, 7, −8, 9, 10, −11. После этого числа на каждой карточке складывают, а полученные 10 сумм перемножают.

а) Может ли в результате получиться 0?

б) Может ли в результате получиться 1?

в) Какое наименьшее целое неотрицательное число может в результате получиться?

Источник: И. В. Яковлев: Материалы по математике 2012 год

17
Задание 19 № 514945

Учитель в школе ставит отметки от 1 до 5. Средний балл ученика равен 4,625.

а) Какое наименьшее количество оценок может иметь ученик?

б) Если у ученика заменить оценки 3, 3, 5, 5 на две четвёрки, то на сколько максимально может увеличиться средний балл?

Источник: И. В. Яковлев: Материалы по математике 2012 год

18
Задание 19 № 516804

На доске написано несколько различных натуральных чисел, произведение любых двух из которых больше 40 и меньше 100.

а) Может ли на доске быть 5 чисел?

б) Может ли на доске быть 6 чисел?

в) Какое наибольшее значение может принимать сумма чисел на доске, если их четыре?

Источник: ЕГЭ по математике 31.03.2017. Досрочная волна.

19
Задание 19 № 517268

На доске написано несколько (более одного) различных натуральных чисел, причем любые два из них отличаются не более чем в три раза.

а) Может ли на доске быть 5 чисел, сумма которых равна 47?

б) Может ли на доске быть 10 чисел, сумма которых равна 94? 

в) Сколько может быть чисел на доске, если их произведение равно 8000?

Источник: ЕГЭ по ма­те­ма­ти­ке — 2017. До­сроч­ная волна, ре­зерв­ный день, вариант А. Ларина (часть С).

20
Задание 19 № 517482

Задумано несколько натуральных чисел (не обязательно различных). Эти числа и все их возможные произведения (по 2 числа, по 3 числа и т. д.) выписывают на доску. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляют одно такое число n, а остальные числа, равные n, стирают. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 9, 12, 36.

а) Приведите пример задуманных чисел, для которых на доске будет записан набор 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90.

б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 3, 5, 7, 9, 15, 21, 35, 45, 105, 315, 945?

в) Приведите все примеры шести задуманных чисел, для которых на доске будет записан набор, наибольшее число в котором равно 82.

Источник: За­да­ния 19 (С7) ЕГЭ 2017

21
Задание 19 № 517489

Задумано несколько натуральных чисел (не обязательно различных). Эти числа и все их возможные произведения (по 2 числа, по 3 числа и т. д.) выписывают на доску. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляют одно такое число n, а остальные числа, равные n, стирают. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 9, 12, 36.

а) Приведите пример задуманных числе, для которых на доске будет записан набор 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150.

б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 2, 5, 10, 11, 22, 25, 55, 110, 275, 550?

в) Приведите все примеры пяти задуманных чисел, для которых на доске будет записан набор, наибольшее число в котором равно 91.

Источник: За­да­ния 19 (С7) ЕГЭ 2017

22
Задание 19 № 517505

Саша берёт пять различных натуральных чисел и проделывает с ними следующие операции: сначала вычисляет среднее арифметическое первых двух чисел, затем среднее арифметическое результата и третьего числа, потом среднее арифметическое полученного результата и четвёртого числа, потом среднее арифметическое полученного результата и пятого числа — число A.

а) Может ли число A равняться среднему арифметическому начальных пяти чисел?

б) Может ли число A быть больше среднего арифметического начальных чисел в пять раз?

в) В какое наибольшее целое число раз число A может быть больше среднего арифметического начальных пяти чисел?

Источник: За­да­ния 19 (С7) ЕГЭ 2017

23
Задание 19 № 517572

На доске написано 30 натуральных чисел. Какие-то из них красные, а какие-то зелёные. Красные числа кратны 7, а зелёные числа кратны 5. Все красные числа отличаются друг от друга, как и все зелёные. Но между красными и зелёными могут быть одинаковые.

а) Может ли сумма зелёных чисел быть меньше 2325?

б) Может ли сумма чисел быть 1467, если только одно число красное?

в) Найдите наименьшее количество красных чисел, которое может быть при сумме 1467.

Источник: За­да­ния 19 (С7) ЕГЭ 2017

24
Задание 19 № 517579

На доске написано 30 натуральных чисел. Какие-то из них красные, а какие-то зелёные. Красные числа кратны 8, а зелёные числа кратны 3. Все красные числа отличаются друг от друга, как и все зелёные. Но между красными и зелёными могут быть одинаковые.

а) Может ли сумма зелёных чисел быть меньше 1395?

б) Может ли сумма чисел быть 1066, если только одно число красное?

в) Найдите наименьшее количество красных чисел, которое может быть при сумме 1066.

Источник: За­да­ния 19 (С7) ЕГЭ 2017

25
Задание 19 № 517581

На доске написано 100 различных натуральных чисел с суммой 5100.

а) Может ли быть записано число 250?

б) Можно ли обойтись без числа 11?

в) Какое наименьшее количество чисел, кратных 11, может быть на доске?

Источник: За­да­ния 19 (С7) ЕГЭ 2017

26
Задание 19 № 517583

На доске написано 100 различных натуральных чисел с суммой 5120.

а) Может ли быть записано число 230?

б) Можно ли обойтись без числа 14?

в) Какое наименьшее количество чисел, кратных 14, может быть на доске?

Источник: За­да­ния 19 (С7) ЕГЭ 2017

27
Задание 19 № 517584

На доске написано 30 различных натуральных чисел, каждое из которых либо четное, либо его десятичная запись заканчивается на цифру 7. Сумма написанных чисел равна 810.

а) Может ли быть 24 четных числа?

б) Может ли быть на доске ровно два числа, оканчивающихся на 7?

в) Какое наименьшее количество чисел с последней цифрой 7 может быть на доске?


Аналоги к заданию № 517584: 517435 Все

Источник: За­да­ния 19 (С7) ЕГЭ 2017

28
Задание 19 № 517585

На доске написано 30 различных натуральных чисел, каждое или оканчивается на 9, или четное, а сумма чисел равна 877.

а) Может ли быть на доске 27 четных чисел?

б) Может ли быть на доске ровно два числа, оканчивающихся на 9?

в) Какое наименьшее количество чисел с последней цифрой 9 может быть на доске?

Источник: За­да­ния 19 (С7) ЕГЭ 2017

Пройти тестирование по этим заданиям



     О проекте · Редакция

© Гущин Д. Д., 2011—2017


СПб ГУТ! С! Ф! У!