СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Математика профильного уровня
≡ математика
сайты - меню - вход - новости


Каталог заданий.
Числовые наборы на карточках и досках

Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Задание 19 № 501694

Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

 

а) Приведите пример задуманных чисел, для которых на доске будет записан набор 2, 4, 6, 8, 10.

б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22?

в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 8, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 33, 34, 41.


Аналоги к заданию № 501694: 501949 501989 502298 521705 Все

Источник: ЕГЭ — 2013, За­да­ния 19 (С7) ЕГЭ 2017

2
Задание 19 № 509826

На доске написано число 2015 и еще несколько (не менее двух) натуральных чисел, не превосходящих 5000. Все написанные на доске числа различны. Сумма любых двух из написанных чисел делится на какое-нибудь из остальных.

а) Может ли на доске быть написано ровно 1009 чисел?

б) Может ли на доске быть написано ровно пять чисел?

в) Какое наименьшее количество чисел может быть написано на доске?

Источник: ЕГЭ по математике — 2015. До­сроч­ная волна, ре­зерв­ный день (часть С).

3
Задание 19 № 513279

На доске было на­пи­са­но 20 на­ту­раль­ных чисел (не обя­за­тель­но раз­лич­ных), каж­дое из ко­то­рых не пре­вос­хо­дит 40. Вме­сто не­ко­то­рых из чисел (воз­мож­но, од­но­го) на доске на­пи­са­ли числа, мень­шие пер­во­на­чаль­ных на еди­ни­цу. Числа, ко­то­рые после этого ока­за­лись рав­ны­ми 0, с доски стёрли.

а) Могло ли ока­зать­ся так, что сред­нее ариф­ме­ти­че­ское чисел на доске уве­ли­чи­лось?

б) Сред­нее ариф­ме­ти­че­ское пер­во­на­чаль­но на­пи­сан­ных чисел рав­ня­лось 27. Могло ли сред­нее ариф­ме­ти­че­ское остав­ших­ся на доске чисел ока­зать­ся рав­ным 34?

в) Сред­нее ариф­ме­ти­че­ское пер­во­на­чаль­но на­пи­сан­ных чисел рав­ня­лось 27. Най­ди­те наи­боль­шее воз­мож­ное зна­че­ние сред­не­го ариф­ме­ти­че­ско­го чисел, ко­то­рые оста­лись на доске.

Источник: Типовые тестовые задания по математике, под редакцией И. В. Ященко 2016

4
Задание 19 № 501714

Задумано несколько целых чисел. Набор этих чисел и все их возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Например, если задуманы числа 2, 3, 5, то на доске будет выписан набор 2, 3, 5, 5, 7, 8, 10.

а) На доске выписан набор −11, −7, −5, −4, −1, 2, 6. Какие числа были задуманы?

б) Для некоторых различных задуманных чисел в наборе, выписанном на доске, число 0 встречается ровно 4 раза. Какое наименьшее количество чисел могло быть задумано?

в) Для некоторых задуманных чисел на доске выписан набор. Всегда ли по этому набору можно однозначно определить задуманные числа?


Аналоги к заданию № 501714: 501756 502318 Все

Источник: ЕГЭ по ма­те­ма­ти­ке 03.06.2013. Ос­нов­ная волна. Сибирь. Ва­ри­ант 302.
Решение · ·

5
Задание 19 № 500820

На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно −3, среднее арифметическое всех положительных из них равно 4, среднее арифметическое всех отрицательных из них равно −8.

а) Сколько чисел написано на доске?

б) Каких чисел написано больше: положительных или отрицательных?

в) Какое наибольшее количество положительных чисел может быть среди них?


Аналоги к заданию № 500820: 505540 Все

Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2013 по математике., Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2018 по математике. Про­филь­ный уровень.

Пройти тестирование по этим заданиям