математика
Информатика
Русский язык
Английский язык
Немецкий язык
Французcкий язык
Испанский язык
Физика
Химия
Биология
География
Обществознание
Литература
История
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 19 № 501949

Задумано не­сколь­ко (не обя­за­тель­но различных) на­ту­раль­ных чисел. Эти числа и их все воз­мож­ные суммы (по 2, по 3 и т. д.) вы­пи­сы­ва­ют на доску в по­ряд­ке неубывания. Если какое-то число n, вы­пи­сан­ное на доску, по­вто­ря­ет­ся не­сколь­ко раз, то на доске остав­ля­ет­ся одно такое число n, а осталь­ные числа, рав­ные n, стираются. Например, если за­ду­ма­ны числа 1, 3, 3, 4, то на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а) При­ве­ди­те при­мер за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 2, 3, 4, 5, 6, 7.

б) Су­ще­ству­ет ли при­мер таких за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?

в) При­ве­ди­те все при­ме­ры за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 7, 9, 11, 14, 16, 18, 20, 21, 23, 25, 27, 30, 32, 34, 41.

Решение.

а) Задуманные числа 1, 1, 1, 1, 1, 1, 1 дают требуемый набор, записанный на доске.

б) Поскольку задуманные числа натуральные, то наименьшее число в наборе — это наименьшее из задуманных чисел, а наибольшее число в наборе — это сумма всех задуманных чисел. Среди чисел записанного набора должна быть сумма всех чисел, кроме наименьшего, то есть 22 − 1 = 21. Но этого числа нет в наборе, поэтому не существует примера таких задуманных чисел, для которого на доске будет выписан набор из условия.

в) Число 7 — наименьшее число в наборе — является наименьшим из задуманных чисел, а наибольшее число в наборе — это сумма всех задуманных чисел. Поэтому количество задуманных чисел не превосходит целой части , то есть 5. Кроме того, числа 9 и 11 меньше, чем сумма двух чисел 7, поэтому они также являются задуманными. Значит, сумма оставшихся задуманных чисел равна 41 − 7 − 9 − 11 = 14. Таким образом, так как наименьшее задуманное число равно 7, оставшиеся задуманные числа — это 7 и 7 или 14. Для задуманных чисел 7, 7, 7, 9, 11 и 7, 9, 11, 14 на доске будет записан набор, данный в условии.

Ответ: а) 1, 1, 1, 1, 1, 1, 1; б) нет; в) 7, 7, 7, 9, 11 или 7, 9, 11, 14.


Аналоги к заданию № 501694: 501989 502298 521705 Все

Источник: ЕГЭ по математике 03.06.2013. Основная волна. Центр. Вариант 101.
Раздел кодификатора ФИПИ/Решу ЕГЭ: Числовые наборы на карточках и досках
Спрятать решение · Прототип задания · ·
Гость 26.02.2014 17:48

В от­ве­те под бук­вой а) воз­мо­жен и такой набор: 1, 2, 4, так как, 1, 2 и 4 сами по себе уже есть. При сум­ми­ро­ва­нии их друг на друга, мы по­лу­чим ряд тех чисел, ко­то­рый должен быть за­пи­сан на доске, а имен­но 1, 2, 3, 4, 5, 6, 7.

1,

2,

1+2=3,

4,

1+4=5,

2+4=6,

1+2+4=7.

Павел Можаев 29.01.2017 21:33

Здравствуйте, для ответа по буквой а возможен и другой ряд чисел: 1,1,2,3