ЕГЭ по математике 03.06.2013. Основная волна. Центр.
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Одна таблетка лекарства весит 70 мг и содержит 4% активного вещества. Ребёнку в возрасте до 6 месяцев врач прописывает 1,05 мг активного вещества на каждый килограмм веса в сутки. Сколько таблеток этого лекарства следует дать ребёнку в возрасте пяти месяцев и весом 8 кг в течение суток?
Ответ:
На диаграмме показано распределение выплавки меди в 11 странах мира (в тысячах тонн) за 2006 год. Среди представленных стран первое место по выплавке меди занимала Папуа — Новая Гвинея, одиннадцатое место — Индия. Какое место занимала Монголия?
Ответ:
Найдите площадь трапеции, изображённой на рисунке.
Ответ:
Независимая экспертная лаборатория определяет рейтинг R бытовых приборов на основе коэффициента ценности, равного 0,01 средней цены P, показателей функциональности F, качества Q и дизайна D. Каждый из показателей оценивается целым числом от 0 до 4. Итоговый рейтинг вычисляется по формуле
В таблице даны средняя цена и оценки каждого показателя для нескольких моделей электрических мясорубок. Определите наивысший рейтинг представленных в таблице моделей электрических мясорубок.
| Модель мясорубки | Средняя цена | Функциональность | Качество | Дизайн |
А | 4100 | 3 | 2 | 4 |
Б | 4700 | 0 | 2 | 2 |
В | 5500 | 3 | 1 | 1 |
Г | 5400 | 0 | 2 | 0 |
Ответ:
Найдите корень уравнения
Ответ:
В треугольнике ABC AC = BC, AB = 10, высота AH равна 3. Найдите синус угла BAC.
Ответ:
Найдите значение выражения
Ответ:
На рисунке изображён график функции у = f(x), определённой на интервале (−5; 9). Найдите количество точек, в которых производная функции f(x) равна 0.
Ответ:
Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы совпадает с центром основания конуса. Радиус сферы равен
Найдите образующую конуса.
Ответ:
Перед началом первого тура чемпионата по настольному теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 спортсменов, среди которых 7 спортсменов из России, в том числе Георгий Бочкин. Найдите вероятность того, что в первом туре Георгий Бочкин будет играть с каким-либо спортсменом из России.
Ответ:
Найдите объём многогранника, вершинами которого являются точки A, B, C, D, E, F, D1 правильной шестиугольной призмы ABCDEFA1B1C1D1E1F1 площадь основания которой равна 5, а боковое ребро равно 9.
Ответ:
Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой 494 МГц. Скорость погружения батискафа, выражаемая в м/с, определяется по формуле где
м/с — скорость звука в воде,
— частота испускаемых импульсов (в МГц), f — частота отражённого от дна сигнала, регистрируемая приёмником (в МГц). Определите наибольшую возможную частоту отражённого сигнала, если скорость погружения батискафа не должна превышать 18 м/с. Ответ выразите в МГц.
Ответ:
Байдарка в 9:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 45 минут, байдарка отправилась назад и вернулась в пункт А в 16:00 того же дня. Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки равна 1 км/ч.
Ответ:
Найдите наименьшее значение функции на отрезке [2; 32].
Ответ:
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
На следующей странице вам будет предложено проверить их самостоятельно.
В правильной четырехугольной пирамиде MABCD с вершиной M стороны основания равны 15, а боковые ребра равны 16.
а) Докажите, что прямые MC и BD перпендикулярны.
б) Найдите площадь сечения пирамиды плоскостью, проходящей через точку B и середину ребра MD параллельно прямой AC.
На следующей странице вам будет предложено проверить их самостоятельно.
Решите систему неравенств
На следующей странице вам будет предложено проверить их самостоятельно.
Окружности радиусов и
с центрами
и
соответственно касаются в точке
Прямая, проходящая через точку A, вторично пересекает меньшую окружность в точке B, а большую — в точке
Найдите площадь треугольника
если
На следующей странице вам будет предложено проверить их самостоятельно.
Найдите все значения a, при каждом из которых уравнение
На следующей странице вам будет предложено проверить их самостоятельно.
Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 2, 4, 6, 8, 10.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 8, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 33, 34, 41.
На следующей странице вам будет предложено проверить их самостоятельно.