Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕГЭ — математика профильная
Вариант № 34184534
1.  
i

Одна таб­лет­ка ле­кар­ства весит 70 мг и со­дер­жит 4% ак­тив­но­го ве­ще­ства. Ребёнку в воз­расте до 6 ме­ся­цев врач про­пи­сы­ва­ет 1,05 мг ак­тив­но­го ве­ще­ства на каж­дый ки­ло­грамм веса в сутки. Сколь­ко таб­ле­ток этого ле­кар­ства сле­ду­ет дать ребёнку в воз­расте пяти ме­ся­цев и весом 8 кг в те­че­ние суток?

2.  
i

На диа­грам­ме по­ка­за­на сред­не­ме­сяч­ная тем­пе­ра­ту­ра воз­ду­ха (в гра­ду­сах Цель­сия) в Ке­ме­ро­во по ре­зуль­та­там мно­го­лет­них на­блю­де­ний. Най­ди­те по диа­грам­ме ко­ли­че­ство ме­ся­цев, когда сред­не­ме­сяч­ная тем­пе­ра­ту­ра в Ке­ме­ро­во выше минус 10 гра­ду­сов Цель­сия.

3.  
i

Най­ди­те пло­щадь тре­уголь­ни­ка, изоб­ра­жен­но­го на клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1 см \times 1 см (см. рис.). Ответ дайте в квад­рат­ных сан­ти­мет­рах.

4.  
i

В слу­чай­ном экс­пе­ри­мен­те сим­мет­рич­ную мо­не­ту бро­са­ют два­жды. Най­ди­те ве­ро­ят­ность того, что на­сту­пит исход ОР (в пер­вый раз вы­па­да­ет орёл, во вто­рой  — решка).

6.  
i

Пе­ри­метр пря­мо­уголь­ной тра­пе­ции, опи­сан­ной около окруж­но­сти, равен 22, ее боль­шая бо­ко­вая сто­ро­на равна 7. Най­ди­те ра­ди­ус окруж­но­сти.

7.  
i

На ри­сун­ке изоб­ра­же­ны гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка и ка­са­тель­ная к этому гра­фи­ку, про­ведённая в точке x0. Най­ди­те зна­че­ние про­из­вод­ной функ­ции g(x)  =  6f(x) − 3x в точке x0.

8.  
i

Най­ди­те объем мно­го­гран­ни­ка, вер­ши­на­ми ко­то­ро­го яв­ля­ют­ся точки A, B, C, A_1, C_1 пра­виль­ной тре­уголь­ной приз­мы ABCA_1B_1C_1, пло­щадь ос­но­ва­ния ко­то­рой равна 3, а бо­ко­вое ребро равно 2.

10.  
i

Ёмкость вы­со­ко­вольт­но­го кон­ден­са­то­ра в те­ле­ви­зо­ре C = 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 6 пра­вая круг­лая скоб­ка Ф. Па­рал­лель­но с кон­ден­са­то­ром под­ключeн ре­зи­стор с со­про­тив­ле­ни­ем R = 5 умно­жить на 10 в сте­пе­ни 6 Ом. Во время ра­бо­ты те­ле­ви­зо­ра на­пря­же­ние на кон­ден­са­то­ре U_0 = 16 кВ. После вы­клю­че­ния те­ле­ви­зо­ра на­пря­же­ние на кон­ден­са­то­ре убы­ва­ет до зна­че­ния U (кВ) за время, опре­де­ля­е­мое вы­ра­же­ни­ем t= альфа RC ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: U_0 , зна­ме­на­тель: U конец дроби (с), где  альфа =0,7 − по­сто­ян­ная. Опре­де­ли­те на­пря­же­ние на кон­ден­са­то­ре, если после вы­клю­че­ния те­ле­ви­зо­ра про­шла 21 с. Ответ дайте в ки­ло­воль­тах.

11.  
i

Петя и Ваня вы­пол­ня­ют оди­на­ко­вый тест. Петя от­ве­ча­ет за час на 8 во­про­сов теста, а Ваня  — на 9. Они од­но­вре­мен­но на­ча­ли от­ве­чать на во­про­сы теста, и Петя за­кон­чил свой тест позже Вани на 20 минут. Сколь­ко во­про­сов со­дер­жит тест?

13.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус x конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: минус x минус 1 конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: минус 5x минус 7 конец ар­гу­мен­та .

14.  
i

В пра­виль­ной тре­уголь­ной приз­ме ABCA1B1C1 сто­ро­на AB ос­но­ва­ния равна 12, а вы­со­та приз­мы равна 2. На рёбрах B1C1 и AB от­ме­че­ны точки P и Q со­от­вет­ствен­но, причём PC1  =  3, а AQ  =  4. Плос­кость A1PQ пе­ре­се­ка­ет ребро BC в точке M.

а)  До­ка­жи­те, что точка M яв­ля­ет­ся се­ре­ди­ной ребра BC.

б)  Най­ди­те рас­сто­я­ние от точки B до плос­ко­сти A1PQ.

15.  
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 14 в сте­пе­ни левая круг­лая скоб­ка 1 плюс де­ся­тич­ный ло­га­рифм x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 7\lg в квад­ра­те левая круг­лая скоб­ка 100x пра­вая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка 0,1x пра­вая круг­лая скоб­ка конец дроби боль­ше или равно дробь: чис­ли­тель: левая круг­лая скоб­ка 4 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка 10x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1 плюс де­ся­тич­ный ло­га­рифм x пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4\lg в квад­ра­те левая круг­лая скоб­ка 100x пра­вая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка 0,1x пра­вая круг­лая скоб­ка конец дроби .

16.  
i

Окруж­ность про­хо­дит через вер­ши­ны A, B и D па­рал­ле­ло­грам­ма ABCD, пе­ре­се­ка­ет сто­ро­ну BC в точ­ках B и E и пе­ре­се­ка­ет сто­ро­ну CD в точ­ках K и D.

а)  До­ка­жи­те, что AE  =  AK.

б)  Най­ди­те AD, если CE  =  10 , DK  =  9 и  ко­си­нус \angle BAD=0,2.

17.  
i

Два бро­ке­ра ку­пи­ли акции од­но­го до­сто­ин­ства на сумму 3640 р. Когда цена на эти акции воз­рос­ла, они про­да­ли часть акций на сумму 3927 р. Пер­вый бро­кер про­дал 75% своих акций, а вто­рой 80% своих. При этом сумма от про­да­жи акций, по­лу­чен­ная вто­рым бро­ке­ром, на 140% пре­вы­си­ла сумму, по­лу­чен­ную пер­вым бро­ке­ром. На сколь­ко про­цен­тов воз­рос­ла цена одной акции?

18.  
i

Най­ди­те все зна­че­ния a, при каж­дом из ко­то­рых урав­не­ние

ax плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3 минус 2x минус x в квад­ра­те конец ар­гу­мен­та = 4a плюс 2

имеет един­ствен­ный ко­рень.
19.  
i

В стро­ку под­ряд на­пи­са­но 1000 чисел. Под каж­дым чис­лом a пер­вой стро­ки на­пи­шем число, ука­зы­ва­ю­щее, сколь­ко раз число a встре­ча­ет­ся в пер­вой стро­ке. Из по­лу­чен­ной таким об­ра­зом вто­рой стро­ки ана­ло­гич­но по­лу­ча­ем тре­тью: под каж­дым чис­лом вто­рой стро­ки пишем, сколь­ко раз оно встре­ча­ет­ся во вто­рой стро­ке. Затем из тре­тьей стро­ки так же по­лу­ча­ем четвёртую, из четвёртой  — пятую и так далее.

а)  До­ка­жи­те, что не­ко­то­рая строч­ка сов­па­да­ет со сле­ду­ю­щей.

б)  До­ка­жи­те, что 11‐⁠я стро­ка сов­па­да­ет с 12‐⁠й.

в)  При­ве­ди­те при­мер такой пер­во­на­чаль­ной строч­ки, для ко­то­рой 10‐⁠я стро­ка не сов­па­да­ет с 11‐⁠й.