Вариант № 22990334

ЕГЭ по математике 10.04.2019. Досрочная волна, резервный день.

При вы­пол­не­нии за­да­ний с крат­ким от­ве­том впи­ши­те в поле для от­ве­та цифру, ко­то­рая со­от­вет­ству­ет но­ме­ру пра­виль­но­го от­ве­та, или число, слово, по­сле­до­ва­тель­ность букв (слов) или цифр. Ответ сле­ду­ет за­пи­сы­вать без про­бе­лов и каких-либо до­пол­ни­тель­ных сим­во­лов. Дроб­ную часть от­де­ляй­те от целой де­ся­тич­ной за­пя­той. Еди­ни­цы из­ме­ре­ний пи­сать не нужно.


Если ва­ри­ант задан учи­те­лем, вы мо­же­те впи­сать или за­гру­зить в си­сте­му от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Учи­тель уви­дит ре­зуль­та­ты вы­пол­не­ния за­да­ний с крат­ким от­ве­том и смо­жет оце­нить за­гру­жен­ные от­ве­ты к за­да­ни­ям с раз­вер­ну­тым от­ве­том. Вы­став­лен­ные учи­те­лем баллы отоб­ра­зят­ся в вашей ста­ти­сти­ке.


Версия для печати и копирования в MS Word
1
Тип Д2 № 525365
i

Цена на элек­три­че­ский чай­ник была по­вы­ше­на на 15% и со­ста­ви­ла 3450 руб­лей. Сколь­ко руб­лей стоил чай­ник до по­вы­ше­ния цены?


Ответ:

2
Тип Д1 № 525366
i

На диа­грам­ме по­ка­за­но рас­пре­де­ле­ние вы­плав­ки алю­ми­ния в 10 стра­нах мира (в ты­ся­чах тонн) за 2009 год. Среди пред­став­лен­ных стран пер­вое место по вы­плав­ке алю­ми­ния за­ни­мал Бах­рейн, де­ся­тое место  — Новая Зе­лан­дия. Какое место за­ни­ма­ла Ис­лан­дия?

B2_lumin1.eps


Ответ:

3
Тип Д4 № 525367
i

На клет­ча­той бу­ма­ге с раз­ме­ром клет­ки 1\times 1 изоб­ражён угол. Най­ди­те тан­генс этого угла.


Ответ:

4
Тип 4 № 525368
i

В фирме такси в на­ли­чии 45 лег­ко­вых ав­то­мо­би­лей; 18 из них чёрного цвета с жёлтыми над­пи­ся­ми на бор­тах, осталь­ные  — жёлтого цвета с чёрными над­пи­ся­ми. Най­ди­те ве­ро­ят­ность того, что на слу­чай­ный вызов при­е­дет ма­ши­на жёлтого цвета с чёрными над­пи­ся­ми.


Ответ:

5

Най­ди­те ко­рень урав­не­ния  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка =125.


Ответ:

6

Ос­но­ва­ния тра­пе­ции равны 6 и 8. Най­ди­те боль­ший из от­рез­ков, на ко­то­рые делит сред­нюю линию этой тра­пе­ции одна из ее диа­го­на­лей.


Ответ:

7

На ри­сун­ке изоб­ра­жен гра­фик про­из­вод­ной функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , опре­де­лен­ной на ин­тер­ва­ле  левая круг­лая скоб­ка минус 4; 9 пра­вая круг­лая скоб­ка . Най­ди­те ко­ли­че­ство точек, в ко­то­рых ка­са­тель­ная к гра­фи­ку функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка па­рал­лель­на пря­мой y= минус 4x плюс 1 или сов­па­да­ет с ней.


Ответ:

8

Ответ:

9
Тип 7 № 525373
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 89 конец ар­гу­мен­та в квад­ра­те минус 39 в квад­ра­те .


Ответ:

10
Тип 9 № 525374
i

Для опре­де­ле­ния эф­фек­тив­ной тем­пе­ра­ту­ры звёзд ис­поль­зу­ют закон Сте­фа­на–Больц­ма­на, со­глас­но ко­то­ро­му P = \sigma ST в сте­пе­ни 4  дробь: чис­ли­тель: Вт, зна­ме­на­тель: м в квад­ра­те умно­жить на К в сте­пе­ни 4 конец дроби , где P  — мощ­ность из­лу­че­ния звез­ды (в ват­тах), \sigma = 5,7 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка   — по­сто­ян­ная, S  — пло­щадь по­верх­но­сти звез­ды (в квад­рат­ных мет­рах), а T  — тем­пе­ра­ту­ра (в кель­ви­нах). Из­вест­но, что пло­щадь по­верх­но­сти не­ко­то­рой звез­ды равна  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 20 пра­вая круг­лая скоб­ка м2, а мощ­ность её из­лу­че­ния равна 5,13 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 25 пра­вая круг­лая скоб­ка Вт. Най­ди­те тем­пе­ра­ту­ру этой звез­ды в кель­ви­нах.


Ответ:

11
Тип 10 № 525375
i

Катер в 10:00 вышел из пунк­та А в пункт В, рас­по­ло­жен­ный в 15 км от А. Про­быв в пунк­те В 1 час, катер от­пра­вил­ся назад и вер­нул­ся в пункт А в 15:00 того же дня. Опре­де­ли­те (в км/час) соб­ствен­ную ско­рость ка­те­ра, если из­вест­но, что ско­рость реки равна 2 км/ч.


Ответ:

12

13

а)  Ре­ши­те урав­не­ние  ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 49 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в сте­пе­ни 4 пра­вая круг­лая скоб­ка .

б)  Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку  левая квад­рат­ная скоб­ка ло­га­рифм по ос­но­ва­нию целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 7 ; ло­га­рифм по ос­но­ва­нию 6 35 пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

14
Тип 14 № 525378
i

В ко­ну­се с вер­ши­ной S и цен­тром ос­но­ва­ния O ра­ди­ус ос­но­ва­ния равен 13, а вы­со­та равна 3 ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та . Точки A и B  — концы об­ра­зу­ю­щих, M  — се­ре­ди­на SA, N  — точка в плос­ко­сти ос­но­ва­ния такая, что пря­мая MN па­рал­лель­на пря­мой SB.

а)  До­ка­жи­те что ANO  — пря­мой угол.

б)  Най­ди­те угол между MB и плос­ко­стью ос­но­ва­ния, если до­пол­ни­тель­но из­вест­но что AB  =  10.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

15
Тип 15 № 525379
i

Ре­ши­те не­ра­вен­ство  дробь: чис­ли­тель: 4 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те плюс x минус 4 пра­вая круг­лая скоб­ка минус 0,5 в сте­пе­ни левая круг­лая скоб­ка 2x в квад­ра­те минус 2x минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 0,2 умно­жить на 5 в сте­пе­ни x минус 1 конец дроби \leqslant0.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

16
Тип 17 № 525380
i

Две окруж­но­сти ка­са­ют­ся внеш­ним об­ра­зом в точке K. Пря­мая AB ка­са­ет­ся пер­вой окруж­но­сти в точке A, а вто­рой   — в точке B. Пря­мая BK пе­ре­се­ка­ет первую окруж­ность в точке D, пря­мая AK пе­ре­се­ка­ет вто­рую окруж­ность в точке C.

а)  До­ка­жи­те, что пря­мые AD и BC па­рал­лель­ны.

б)  Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка BCD, если из­вест­но, что ра­ди­ус пер­вой окруж­но­сти равен 4, а ра­ди­ус вто­рой окруж­но­сти равен 1.


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

17
Тип 16 № 525381
i

Стро­и­тель­ство но­во­го за­во­да стоит 159 млн руб­лей. За­тра­ты на про­из­вод­ство х тыс. ед. про­дук­ции на таком за­во­де равны 0,5x в квад­ра­те плюс 2x плюс 6 млн руб­лей в год. Если про­дук­цию за­во­да про­дать по цене р тыс. руб­лей за еди­ни­цу, то при­быль фирмы (в млн руб­лей) за один год со­ста­вит px минус левая круг­лая скоб­ка 0,5x в квад­ра­те плюс 2x плюс 6 пра­вая круг­лая скоб­ка . Когда завод будет по­стро­ен, фирма будет вы­пус­кать про­дук­цию в таком ко­ли­че­стве, чтобы при­быль была наи­боль­шей. При этом в пер­вый год p  =  10, а далее каж­дый год воз­рас­та­ет на 1. За сколь­ко лет оку­пит­ся стро­и­тель­ство?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

18
Тип 18 № 525382
i

Най­ди­те все зна­че­ния па­ра­мет­ра a, при каж­дом из ко­то­рых урав­не­ние 2 синус x плюс ко­си­нус x=a имеет един­ствен­ное ре­ше­ние на от­рез­ке  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби пра­вая квад­рат­ная скоб­ка .


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.

19
Тип 19 № 525383
i

Склад пред­став­ля­ет собой пря­мо­уголь­ный па­рал­ле­ле­пи­пед с це­лы­ми сто­ро­на­ми, кон­тей­не­ры  — пря­мо­уголь­ные па­рал­ле­ле­пи­пе­ды с раз­ме­ра­ми 1×1×3 м. Кон­тей­не­ры на скла­де можно класть как угод­но, но па­рал­лель­но гра­ни­цам скла­да.

а)  Может ли ока­зать­ся, что пол­но­стью за­пол­нить склад раз­ме­ром 120 ку­бо­мет­ров нель­зя?

б)  Может ли ока­зать­ся, что на склад объ­е­мом 100 ку­бо­мет­ров не удаст­ся по­ме­стить 33 кон­тей­не­ра?

в)  Пусть объем скла­да равен 800 ку­бо­мет­ров. Какой про­цент объ­е­ма та­ко­го скла­да удаст­ся га­ран­ти­ро­ва­но за­пол­нить кон­тей­не­ра­ми при любой кон­фи­гу­ра­ции скла­да?


Решения заданий с развернутым ответом не проверяются автоматически. Запишите решение на бумаге.
На следующей странице вам будет предложено проверить их самостоятельно.
Завершить работу, свериться с ответами, увидеть решения.